• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実施状況報告書

Development of learning subspace-based methods for pattern recognition

研究課題

研究課題/領域番号 22K17960
研究機関国立研究開発法人産業技術総合研究所

研究代表者

SALESDESOUZA LINCON  国立研究開発法人産業技術総合研究所, 情報・人間工学領域, 研究員 (40912481)

研究期間 (年度) 2022-04-01 – 2026-03-31
キーワードSubspace learning / Deep neural networks / Manifold optimization
研究実績の概要

In fiscal year 2022, we worked to address the problem that traditional deep neural network frameworks process image sets independently, without considering the underlying feature distribution and the variance of the images in the set. To overcome this limitation, we devised a new subspace learning method called Grassmannian learning mutual subspace method (G-LMSM), which is an NN layer that can be integrated into deep neural networks.
G-LMSM maps the image set into a low-dimensional input subspace representation, which is then matched with dictionary subspaces using a similarity metric of their canonical angles, an interpretable and computationally efficient metric. The key idea of G-LMSM is to learn dictionary subspaces as points on the Grassmann manifold, which is a smooth, non-linear manifold that captures the geometric structure of subspaces. This learning is optimized with Riemannian stochastic gradient descent, which is stable, efficient, and theoretically well-grounded.
The proposed method was evaluated on three different tasks: hand shape recognition, face identification, and facial emotion recognition. Our experimental results showed that G-LMSM outperformed state-of-the-art methods on all three tasks, demonstrating its potential to improve the performance of deep frameworks for object recognition from image sets.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

Reason: We were able to combine subspace learning and deep neural networks to improve the performance in tasks of image set recognition.

今後の研究の推進方策

We will work on new ways to combine subspace learning and deep neural network that can address their problems and improve performance.

次年度使用額が生じた理由

Reason: To cover cloud computing costs to use in the next fiscal year and to attend conferences.
Plan: We plan to purchase cloud computing that can process large-scale data at high speed and attend conferences to gather necessary information on the latest technologies and/or present our research.

  • 研究成果

    (4件)

すべて 2023 2022

すべて 雑誌論文 (2件) (うち国際共著 2件、 査読あり 2件、 オープンアクセス 1件) 学会発表 (2件) (うち国際学会 1件)

  • [雑誌論文] Grassmannian learning mutual subspace method for image set recognition2023

    • 著者名/発表者名
      Souza Lincon S.、Sogi Naoya、Gatto Bernardo B.、Kobayashi Takumi、Fukui Kazuhiro
    • 雑誌名

      Neurocomputing

      巻: 517 ページ: 20~33

    • DOI

      10.1016/j.neucom.2022.10.040

    • 査読あり / 国際共著
  • [雑誌論文] Temporal-stochastic tensor features for action recognition2022

    • 著者名/発表者名
      Batalo Bojan、Souza Lincon S.、Gatto Bernardo B.、Sogi Naoya、Fukui Kazuhiro
    • 雑誌名

      Machine Learning with Applications

      巻: 10 ページ: 100407~100407

    • DOI

      10.1016/j.mlwa.2022.100407

    • 査読あり / オープンアクセス / 国際共著
  • [学会発表] Analysis of Temporal Tensor Datasets on Product Grassmann Manifold2022

    • 著者名/発表者名
      Bojan Batalo, Lincon S. Souza, Naoya Sogi, Bernardo B. Gatto, Kazuhiro Fukui
    • 学会等名
      CVPR 2022 Workshop on Vision Datasets Understanding
    • 国際学会
  • [学会発表] Environmental sound classification based on CNN latent subspaces2022

    • 著者名/発表者名
      Maha Mahyub, Lincon S. Souza, Bojan Batalo, Kazuhiro Fukui
    • 学会等名
      International Workshop on Acoustic Signal Enhancement (IWAENC 2022)

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi