• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実績報告書

Elucidation of the adaptive mechanism of intricate human motion imitated by deep reinforcement learning

研究課題

研究課題/領域番号 22K20519
研究機関国立研究開発法人産業技術総合研究所

研究代表者

Shen Keli  国立研究開発法人産業技術総合研究所, 情報・人間工学領域, 産総研特別研究員 (80965179)

研究期間 (年度) 2022-08-31 – 2024-03-31
キーワードTD-PCA / Beat-aligned synergies / Beat detection / Complexity analysis / Deep RL / Motor coordination / Computational modeling / Sports biomechanics
研究実績の概要

We developed a TD-PCA approach to extract beat-aligned motor synergies from street dance datasets, leveraging the first synergy to improve kinematic beat detection and enable accurate beat alignment with music. The enhancement was verified through cross-validation. Our computational framework analyzes complex dance motions, understanding motor mechanisms in dance genres, providing insights into movement dynamics/music relationships, with applications in dance research, performance analysis, training, and injury prevention. We simulated deep reinforcement learning models reproducing dance skills, analyzing them kinematically/kinetically, demonstrating our methods' effectiveness for studying AI-generated dance movements.

備考

Keli Shen and Jun-ichiro Hirayama, Beat-aligned motor synergies and kinematic beat detection in street dance movements, eLife (submitted).

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi