• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実施状況報告書

Event-Clock Hybrid Driven Reconfigurable Perception-Computation Technology

研究課題

研究課題/領域番号 22K21280
研究機関奈良先端科学技術大学院大学

研究代表者

KAN YIRONG  奈良先端科学技術大学院大学, 先端科学技術研究科, 助教 (50963732)

研究期間 (年度) 2022-08-31 – 2024-03-31
キーワードReconfigurable Computing / CGRA / Neuromorphic Systems / Spiking Neural Networks
研究実績の概要

This year, we developed and verified the following technologies for the hybrid-driven reconfigurable perception-computation platform: (1) Spike coding of Electroencephalogram (EEG) signals and its spiking neural network (SNN)-based processing. In several works, we successfully applied spike coding to adaptive, stochastic and frequency coding of EEG signals, respectively, and achieved competitive sleep stage classification accuracy based on SNN; (2) A ternary weight quantization method for deep SNNs and hardware implementation. In this work, we achieved energy-efficient inference hardware by quantizing the weights of SNNs to {-1, 0, 1}. The gradient disappearance problem during model training is avoided by designing cross-layer connections. Simple logical operations can be used in ternary weights SNNs at the inference stage, to reducing hardware overhead; (3) Training and construction mechanism of reconfigurable bisection neural network (BNN) topology. We proposed a general construction method of BNN and its training mechanism. By constructing a mask matrix with a bisection structure, we can automatically train a BNN model with a specific topology.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

Current research progress matches expectations. The main reasons are: (1) spike coding works well on time series data (such as EEG signals); (2) We already have a foundation in the efficient hardware implementation of SNNs; (3) Completed the theoretical basis of reconfigurable NNs. 3 papers have been published in international journals; 4 papers have been published in international conferences; and currently 2 papers are being submitted to international conferences.

今後の研究の推進方策

Firstly, we will integrate SNN with bisection topology to realize reconfigurable SNN hardware. Then, the adders and multipliers in the original SNN hardware are replaced with look-up tables to realize low-power calculations. Secondly, we will explore the integration of stochastic computing and BNN to realize a computing architecture with temporal-spatial re-configurability. Finally, we apply the proposed platform to various online perception/computation applications.

次年度使用額が生じた理由

We need time to work on the VLSI design, so the chips will be produced in a combined current and next year's funding.

  • 研究成果

    (7件)

すべて 2022

すべて 雑誌論文 (3件) (うち国際共著 2件、 査読あり 3件) 学会発表 (4件) (うち国際学会 4件)

  • [雑誌論文] Bisection Neural Network Toward Reconfigurable Hardware Implementation2022

    • 著者名/発表者名
      Chen Yan、Zhang Renyuan、Kan Yirong、Yang Sa、Nakashima Yasuhiko
    • 雑誌名

      IEEE Transactions on Neural Networks and Learning Systems

      巻: 1 ページ: 1~11

    • DOI

      10.1109/TNNLS.2022.3195821

    • 査読あり / 国際共著
  • [雑誌論文] MuGRA: A Scalable Multi-Grained Reconfigurable Accelerator Powered by Elastic Neural Network2022

    • 著者名/発表者名
      Kan Yirong、Wu Man、Zhang Renyuan、Nakashima Yasuhiko
    • 雑誌名

      IEEE Transactions on Circuits and Systems I: Regular Papers

      巻: 69 ページ: 258~271

    • DOI

      10.1109/TCSI.2021.3099034

    • 査読あり
  • [雑誌論文] Online Learning of Parameters for Modeling User Preference Based on Bayesian Network2022

    • 著者名/発表者名
      Kan Yirong、Yue Kun、Wu Hao、Fu Xiaodong、Sun Zhengbao
    • 雑誌名

      International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems

      巻: 30 ページ: 285~310

    • DOI

      10.1142/S021848852250012X

    • 査読あり / 国際共著
  • [学会発表] Adaptive spike-like representation of eeg signals for sleep stages scoring2022

    • 著者名/発表者名
      Lingwei Zhu, Ziwei Yang, Koki Odani, Guang Shi, Yirong Kan, Zheng Chen, Renyuan Zhang
    • 学会等名
      2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
    • 国際学会
  • [学会発表] A Stochastic Coding Method of EEG Signals for Sleep Stage Classification2022

    • 著者名/発表者名
      Guangxian Zhu, Huijia Wang, Yirong Kan, Zheng Chen, Ming Huang, MD Amin, Naoaki Ono, Shigehiko Kanaya, Renyuan Zhang, Yasuhiko Nakashima
    • 学会等名
      2022 IEEE 35th International System-on-Chip Conference (SOCC)
    • 国際学会
  • [学会発表] Automatic Sleep Staging via Frequency-Wise Spiking Neural Networks2022

    • 著者名/発表者名
      Haohui Jia, Ziwei Yang, Pei Gao, Man Wu, Chen Li, Yirong Kan, Renyuan Zhang
    • 学会等名
      2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
    • 国際学会
  • [学会発表] GAND-Nets: Training Deep Spiking Neural Networks with Ternary Weights2022

    • 著者名/発表者名
      Man Wu, Yirong Kan, Renyuan Zhang, Yasuhiko Nakashima
    • 学会等名
      2022 IEEE 35th International System-on-Chip Conference (SOCC)
    • 国際学会

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi