• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実施状況報告書

Event-Clock Hybrid Driven Reconfigurable Perception-Computation Technology

研究課題

研究課題/領域番号 22K21280
研究機関奈良先端科学技術大学院大学

研究代表者

KAN YIRONG  奈良先端科学技術大学院大学, 先端科学技術研究科, 助教 (50963732)

研究期間 (年度) 2022-08-31 – 2025-03-31
キーワードReconfigurable Hardware / Stochastic Computing / Spiking Neural Network
研究実績の概要

This year, we developed and verified the following technologies: (1) Designed and implemented an ultra-compact calculation unit with temporal-spatial re-configurability by combining a novel bisection neural network topology with stochastic computing; (2) Proposed a non-deterministic training approach for memory-efficient stochastic computing neural networks (SCNN). By introducing a multiple parallel training strategy, we greatly compress the computational latency and memory overhead of SCNN; (3) Developed a low-latency spiking neural network (SNN) with improved temporal dynamics. By analyzing the temporal dynamic characteristics of SNN encoding, we realized a high accuracy SNN model using fewer time steps.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

Current research progress matches expectations. The main reasons are: (1) We implemented a computing platform with temporal-spatial reconfigurability through the combination of stochastic computing and bisection neural network;(2)The computational delay and memory overhead of stochastic computing neural networks are compressed through algorithm optimization;(3)A low-latency SNN model was developed via improved temporal dynamics. This year, three papers have been published at international conferences; one paper is currently being submitted to an international conference.

今後の研究の推進方策

We plan to combine SNN and bisection neural network topology to realize fully parallel and reconfigurable SNN hardware. By introducing structured sparse synaptic connections in SNNs, the neuron computation and weight storage costs can be significantly reduced. Benefiting from the hardware-friendly symmetric SNN topology, the accelerator is flexibly configured into multiple classifiers without hardware redundancy to support various tasks. We will explore how to achieve the highest classification performance with minimal hardware cost in the future work.

次年度使用額が生じた理由

We will purchase a multifunctional mobile equipment and connect it to an existing FPGA board to demonstrate image processing functions based on our technologies. In addition, we will cover international conference registration fees and travel expenses during next fiscal year.

  • 研究成果

    (3件)

すべて 2023

すべて 学会発表 (3件) (うち国際学会 3件)

  • [学会発表] An Ultra-Compact Calculation Unit with Temporal-Spatial Re-configurability2023

    • 著者名/発表者名
      Guangxian Zhu, Yirong Kan, Renyuan Zhang, Yasuhiko Nakashima
    • 学会等名
      2023 21st IEEE Interregional NEWCAS Conference (NEWCAS)
    • 国際学会
  • [学会発表] A Low Latency Spiking Neural Network with Improved Temporal Dynamics2023

    • 著者名/発表者名
      Yunpeng Yao, Yirong Kan, Guangxian Zhu, Renyuan Zhang
    • 学会等名
      2023 IEEE 36th International System-on-Chip Conference (SOCC)
    • 国際学会
  • [学会発表] A Non-deterministic Training Approach for Memory-Efficient Stochastic Neural Networks2023

    • 著者名/発表者名
      Babak Golbabaei, Guangxian Zhu, Yirong Kan, Renyuan Zhang, Yasuhiko Nakashima
    • 学会等名
      2023 IEEE 36th International System-on-Chip Conference (SOCC)
    • 国際学会

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi