研究実績の概要 |
Proteolysis-targeting chimera (PROTAC) technology is a disruptive innovation in the drug development community. Recently, oligonucleotide-warheaded PROTACs have emerged as a promising new tool to degrade DNA-binding proteins such as transcription factors. In this study, we applied an oligonucleotide-warheaded PROTAC technology to induce the degradation of signal transducer and activator of transcription 3 (STAT3), which is a hard-to-target protein. A double-stranded decoy oligonucleotide specific to STAT3 was conjugated to pomalidomide, VH032, and LCL161 to generate PROTAC molecules that recruited different E3 ubiquitin ligases CRBN, VHL and IAP, respectively. One of the resulting PROTAC molecules, POM-STAT3, which recruits CRBN, potently induces STAT3 degradation. STAT3 degradation by POM-STAT3 was abolished by scrambling the oligonucleotide sequences of POM-STAT3 and by adding a double-stranded decoy oligonucleotide against STAT3 in a competitive manner, suggesting the significance of oligonucleotide sequences in STAT3 degradation. Moreover, POM-STAT3-induced STAT3 degradation was suppressed by the CRBN binder thalidomide, proteasome inhibitor bortezomib, E1 inhibitor MLN7243, indicating that STAT3 degradation is mediated by the ubiquitin-proteasome system, which involves CRBN as the responsible E3 ubiquitin ligase. Consistent with STAT3 degradation, NCI-H2087 cell viability was severely reduced following POM-STAT3 treatment. Thus, POM-STAT3 is a STAT3 degrader that potentially has cytocidal activity against cancer cells that are highly dependent on STAT3 signaling.
|