• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実績報告書

見本路に依存するジャンプ拡散過程の漸近挙動

研究課題

研究課題/領域番号 22KF0158
配分区分基金
研究機関信州大学

研究代表者

謝 賓  信州大学, 学術研究院理学系, 教授 (50510038)

研究分担者 ZHU MIN  信州大学, 学術研究院理学系, 外国人特別研究員
研究期間 (年度) 2023-03-08 – 2024-03-31
キーワードanisotropic / compactness / Galerkin approximation / Singular coefficient
研究実績の概要

The achievements are about the studies on anisotropic stochastic partial differential equations (SPDEs) and numerical schemes for stochastic differential equations (SDEs).
Under weak assumptions, especially locally monotonic one, the existence and uniqueness of probabilistically strong solutions to anisotropic SPDEs is obtained by the variational approach. The Galerkin approximation and compactness argument are developed. Such result is expressed by two special and important anisotropic SPDEs, one is the anisotropic stochastic reaction-diffusion and the other is anisotropic stochastic Navier-Stokes equation.
The convergence of numerical schemes for stochastic differential equations with singular drift and alpha-stable noise is studied. By choosing a suitable approximation method to simulate the segment process, the convergence rate of the Euler-Maruyama scheme associated with the weakly interacting system for path-distribution dependent SDEs is obtained. To overcome the difficulties from the singular drift and the multiplicative noise, we establish a deterministic inequality and refine the regularity of solutions to the associated Kolmogorov equation, and thus obtain strong convergence of Euler-Maruyama scheme associated stochastic systems considered.

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi