研究実績の概要 |
The degradation mechanism of catalytic and the pathway of humic acid was revealed. The important parameters such as initial solution concentration, air/pureoxygen, reaction temperature, catalyst dosage, and single-atom loading were discussed. The study of the synergistic enhancement effect of single-atom loading on the catalytic reaction system was emphasized. By using the constructed porous TiZrO4/M hollow sphere catalyst, the catalytic oxidation experiment of humic acidwas carried out, and the degradation mechanism and pathway of humic acid are proposed, revealing the degradation efficiency and the surface catalytic oxidation reaction mechanism of humic acid. Since the prepared H-TiZrO4/M composite catalytic material has unique multi-channel confined structure, the influence of its structure features on the heterogeneous interface adsorption characteristics, the mass transfer capacity and electron transfer rate were studied thoroughly. We published two papers.
|
今後の研究の推進方策 |
The next step of research is also underway. The the degradation pathways of humic acid in the landfill leachate will be discussed through using GC, LC-MS, GC-MS. The catalytic oxidation effect of landfill leachate will be analyzed, including the conversion of humic acid and other organic matter. The impact of ammonia nitrogen in the leachate on the catalyst activity will be discussed in the next step. We will be summarized the results and write the manuscript for publication.
|