• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実績報告書

スクリャーニン・ホイン演算子とホイン・バンルベ対応に関する研究

研究課題

研究課題/領域番号 22F21320
配分区分補助金
研究機関京都大学
受入研究者 辻本 諭  京都大学, 情報学研究科, 教授 (60287977)
外国人特別研究員 GABORIAUD JULIEN  京都大学, 情報学研究科, 外国人特別研究員
研究期間 (年度) 2022-04-22 – 2024-03-31
キーワードHeun operator / Integrable system / orthogonal polynomials
研究実績の概要

One key question at the core of the research program is: how can we effectively tackle the task of finding and studying novel and increasingly general special functions?
Inspired by previous work on q→-1 limits of various families of orthogonal polynomials, we tried extending it to encompass more general special functions, specifically hypergeometric rational functions. We studied the Wilson biorthogonal rational functions, which can be thought of as a rational function generalization of the Askey-Wilson polynomials. We obtained their q→-1 limits and characterized the properties of the resulting functions. These developments have led to multiple conference presentations and an article on these results is in preparation.
Following the presentation of these results in conferences, discussions with Alexander Stokes from Tokyo University were initiated, on the topic of q→-1 limits of Painleve equations. Painleve equations in the -1 world were not known but one hope was to make some progress through the use of Sklyanin-Heun operators. Alexander Stokes visited Kyoto for a few days of work but so far there has not been any significant breakthrough.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

One remarkable aspect of special functions is their connection with abstract algebra in mathematics. Through the study of representations of algebras, one often encounters special functions. This includes representations of quantum algebras, which possess a parameter q. It has been seen that the representation theory of these algebras when q→-1 is related to q→-1 limits of various families of orthogonal polynomials. We are now trying to extend this to other cases when q tends to other roots of unity.
Another promising avenue of research is the exploration of multivariate families of orthogonal polynomials. This connects to various other fields, such as association schemes, tridiagonal pairs, etc. A number of projects related to this that are currently being developed.

今後の研究の推進方策

We are planning to discuss the above questions related to the limits when q tends to other roots of unity with Alexis Langlois-Remillard during his visit in Kyoto in June 2023. We are also hoping to study extensions of Leonard pairs, called tridiagonal pairs, with Nicolas Crampe during his visit in Kyoto in May 2023. On the topic of q→-1 limits of Wilson biorthogonal rational functions, we are planning to complete the first draft of the paper. Note that these functions are very general. As such, it would be desirable to also develop other more simple examples of q→-1 limits of rational functions. A first idea that comes to mind would be to study q-Pastro polynomials and their q→-1 limits. Such an example would provide an easier entry into the world of q→-1 rational functions.

  • 研究成果

    (5件)

すべて 2022 その他

すべて 国際共同研究 (2件) 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件) 学会発表 (2件)

  • [国際共同研究] Universite de Tours/Universite Savoie Mont Blanc(フランス)

    • 国名
      フランス
    • 外国機関名
      Universite de Tours/Universite Savoie Mont Blanc
  • [国際共同研究] Ghent University(ベルギー)

    • 国名
      ベルギー
    • 外国機関名
      Ghent University
  • [雑誌論文] Bispectrality and biorthogonality of the rational functions of q-Hahn type2022

    • 著者名/発表者名
      Bussiere Ismael、Gaboriaud Julien、Vinet Luc、Zhedanov Alexei
    • 雑誌名

      Journal of Mathematical Analysis and Applications

      巻: 516 ページ: 126443~126443

    • DOI

      10.1016/j.jmaa.2022.126443

    • 査読あり / 国際共著
  • [学会発表] -1 Integrable Systems and Orthogonal Polynomials2022

    • 著者名/発表者名
      Julien Gaboriaud
    • 学会等名
      2022 JSIAM annual meeting, Event held online
  • [学会発表] A new q→-1 limit of Wilson’s Biorthogonal Rational Functions2022

    • 著者名/発表者名
      Julien Gaboriaud
    • 学会等名
      From nonlinear waves to integrable systems 2022

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi