• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実績報告書

深層学習による医用画像情報の悉皆的理解

研究課題

研究課題/領域番号 22KF0261
配分区分基金
研究機関奈良先端科学技術大学院大学

研究代表者

金谷 重彦  奈良先端科学技術大学院大学, 先端科学技術研究科, 教授 (90224584)

研究分担者 TEUHO JARMO  奈良先端科学技術大学院大学, 先端科学技術研究科, 外国人特別研究員
研究期間 (年度) 2023-03-08 – 2024-03-31
キーワード医用画像解析 / バイオインフォマティクス / 疾患データ / 健常データ
研究実績の概要

「深層学習による医用画像情報の悉皆的理解」として、フィンランドでは、国内であれば医用画像を活用できる。すなわち、フィンランド・トゥルク大学では、疾患データベースをフィンランド国の医療研究者が無償で活用できる体制が出来上がっている。また対象者数もフィンランド国民を対象としているため充実している。このようにデータ数ならびに医用画像の国を挙げての収集により、医用画像ならびに医用分析データを活用することができる。このことは汎化性能を向上させることを目的とした、疾患推定モデルの構築が可能である。そこで、フィンランド・トゥルク大学と奈良先端大学院との共同研究を進める意義は極めて重要である。
そこで、フィンランド側では、フィンランド国で構築した医用画像の収集をおこなった。奈良先端大学院大学側では、計算システムズ生物学研究室・小野直亮准教授の開発した、深層学習モデル、例えば、グラフコンボリューション・ニューラル・ネットワークを基盤においた深層学習モデル、分子ハイパーグラフをかつようした多変量データ解析法を活用した。また、代謝疾患と代謝の関係の動態を理解するために、バイオインフォマティクスによる代謝シミュレーションを検討した。
疾患の情報にもとづいた、深層学習によるPET画像の分類モデルを構築し、疾患の評価を行なった。また、深層学習・代謝シミュレーションによる生体内における分子レベルでのヒトの代謝をモデル化した。

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi