• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実績報告書

リモートセンシングとディープラーニングを用いた土地利用と土地被覆変化の把握と予測

研究課題

研究課題/領域番号 22KF0301
配分区分基金
研究機関九州大学

研究代表者

鶴崎 直樹  九州大学, 人間環境学研究院, 准教授 (20264096)

研究分担者 MUHAMMAD MUHAMMAD  九州大学, 人間環境学研究院, 外国人特別研究員
研究期間 (年度) 2023-03-08 – 2024-03-31
キーワードLand Use / Land Cover / deep learning / satellite imagery
研究実績の概要

In this study, we used Sentinel-2 satellite images (high-resolution multispectral data) from 2015 to 2021 taken by the European Space Agency (ESA) to detect land cover conditions and changes. We also utilized convolutional neural network (CNN) models based on deep learning (DL) techniques.
The objective of this study was to demonstrate the versatility and effectiveness of this method in addressing the challenges of land cover mapping across different contexts and landscapes in the earthquake affected areas of Mashiki Town, Kumamoto Prefecture and Greater Cairo, Egypt.
The innovative approach of combining deep learning and remote sensing techniques in this study proved to be very effective in tackling complex urban dynamics. A particularly striking achievement is the exceptional accuracy level achieved by the trained model. Across all land use and land cover classes in the study area, our model consistently achieved accuracy levels in excess of 90%.
This high level of accuracy demonstrates the robustness and reliability of our approach in accurately classifying and mapping land use and land cover change. We have utilized geospatial metrics and remote sensing methods to delve deeper into the dynamics of urban landscapes and provide a more comprehensive understanding of spatial change over time.

  • 研究成果

    (5件)

すべて 2024 2023

すべて 雑誌論文 (1件) (うち査読あり 1件、 オープンアクセス 1件) 学会発表 (4件)

  • [雑誌論文] Impacts of Rapid Urban Expansion on Peri-Urban Landscapes in the Global South: Insights from Landscape Metrics in Greater Cairo2024

    • 著者名/発表者名
      Muhammad Salem, Naoki Tsurusaki
    • 雑誌名

      Sustainability

      巻: 16 ページ: 1-16

    • 査読あり / オープンアクセス
  • [学会発表] Assessing Land Use/Land Cover Change and Damages Resulted from Earthquakes Using Remote Sensing and Deep Learning Techniques2023

    • 著者名/発表者名
      MUHAMMAD SALEM SAID MUHAMMAD
    • 学会等名
      International Conference and Exhibition for Science (ICES2023)
  • [学会発表] Detection of Earthquake-Induced Building Damages Using Remote Sensing Data and Deep Learning: A Case Study of Mashiki Town, Japan2023

    • 著者名/発表者名
      MUHAMMAD SALEM SAID MUHAMMAD
    • 学会等名
      International Geoscience and Remote Sensing Symposium
  • [学会発表] Deep Learning for Land Cover Mapping Using Sentinel-2 Imagery: A Case Study at Greater Cairo, Egypt2023

    • 著者名/発表者名
      MUHAMMAD SALEM SAID MUHAMMAD
    • 学会等名
      International Geoscience and Remote Sensing Symposium
  • [学会発表] Innovative Deep Learning and Remote Sensing Solutions for Urban Monitoring and Sustainable Development2023

    • 著者名/発表者名
      MUHAMMAD SALEM SAID MUHAMMAD
    • 学会等名
      The 9th International Exchange and Innovation Conference on Engineering & Sciences (IEICES 2023)

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi