研究課題/領域番号 |
22KF0310
|
配分区分 | 基金 |
研究機関 | 九州大学 |
研究代表者 |
陳 強 九州大学, 工学研究院, 教授 (30264451)
|
研究分担者 |
CHEN YAO 九州大学, 工学研究院, 外国人特別研究員
|
研究期間 (年度) |
2023-03-08 – 2025-03-31
|
キーワード | Mg-RE alloy / Very-high-cycle fatigue / Nano-precipitates / Crack nucleation / Damage accumulation |
研究実績の概要 |
We investigated the very high cycle fatigue behavior of a long-period stacking ordered (LPSO) strengthened Mg alloy under both solution and aging conditions. The main microstructural difference between the two conditions is characterized by dense β' nano-precipitates under the aging condition. The fatigue strengths are comparable under both conditions, whereas the fatigue lives tend to be improved apparently under the aging condition. The improved fatigue lives under the aging condition are attributed to the dense β' nanoprecipitates, which delay the processes of crack initiation and early propagation. Plastic localization shows a continuous pattern along the damage bands under the solution condition, while it shows a scattered pattern along the damage bands under the aging condition due to the effect of β' nano-precipitates, which affect the fatigue crack nucleation mechanism.
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
As planned, macroscopic fatigue properties and damage localizations under solution and aging conditions have been investigated on the LPSO-strengthened Mg alloy. The results obtained have been submitted to the journal of Materials Science & Engineering A and International Journal of Fatigue. Further research will be conducted to improve the macroscopic fatigue properties through regulating the microstructure via heat treatment. On the whole, we have achieved the research goals set up for FY2023, and the progress of the project was partially advanced.
|
今後の研究の推進方策 |
Stacking faults (SFs) enhance non-basal dislocation sources in magnesium, addressing its ductility challenges. Therefore, we are interested in the fatigue response of the SFs-strengthened Mg alloy. We will systematically engineer two types of Mg alloy with the same laminated nanostructures: one with profuse SFs and one with dense LPSO lamellae. This will enable a comparative investigation of the fatigue response between the SFs-strengthened Mg and the LPSO-strengthened Mg. We are interested in which is more effective in enhancing the fatigue properties, and the corresponding fatigue mechanisms.
|