研究実績の概要 |
The key idea of this project is investigating new-type photon blockade effects for manipulating quantum correlations with non-Hermitian strategies. Specifically, we have studied: (i) Backscattering-Immune Photon Blockade (under review in Physical Review Letters; co-corresponding author). We propose how to realize backscattering-immune single-photon blockade by introducing a nanotip near a nonlinear optical cavity. Our work opens a route towards generating and protecting fragile quantum resources with unique applications for robust quantum devices at the single-photon level. (ii) Quantum nonreciprocity in a non-Hermitian atom-light system (under review in Nature Photonics; co-first author). We find that by exchanging the input and output directions of the same chiral light, bipartite quantum correlations of photons can surprisingly emerge in a highly nonreciprocal way, i.e., the correlations exist only in a chosen direction but none at all in the other direction.
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
Our research focus on the theoretical studies of photon blockade effects with exceptional points. In FY2022 and FY2023, we have explored such novel quantum effect, namely exceptional photon blockade [Laser & Photonics Reviews 16, 2100430 (2022)], and also studied its potential application, i.e., revival of quantum effect with the help of loss, and quantum switch of single- or two-photon devices by tuning loss [Physical Review A 106, 043715 (2022)], as well as backscattering-immune quantum correlations [under review in Physical Review Letters]. These works meet the goals of this project: to implement novel photon blockade effects with exceptional points in optical cavities, and to improve the performance of single-photon devices in quantum information processing. Moreover, we studied nonreciprocal quantum correlation in a non-Hermitian system (under review in Nature Photonics).
|