論文「Lattice isometries and K3 surface automorphisms: Salem numbers of degree 20」が国際学術誌 Journal of Number Theory から出版された.この論文は,与えられた多項式がユニモジュラー偶格子の自己同型の固有多項式として実現できるための局所大域的な障害を記述し,さらに,そのK3曲面の自己同型のエントロピースペクトラムの問題への応用を述べた E. Bayer-Fluckiger による仕事を拡張するものである.より詳しく述べると,Bayer-Fluckiger の議論を整理し,局所大域障害を改めて定式化し,さらに,素数2における局所的な議論を精密に行うことなどにより,与えられた多項式の定数項が-1である場合にも議論を適用できるようにした.そのエントロピースペクトラムの問題への応用として「20次のSalem数の対数はすべて非射影的なK3曲面の自己同型のエントロピーとして実現される」ことを証明している.この時点で,Bayer-Fluckiger による結果と合わせて,非射影的なK3曲面の自己同型のエントロピーとして実現可能なSalem数を決定する問題は,Salem数の次数が10または18の場合を除いて解決した. 本年度はさらに,上述の局所大域障害を組織的に計算する方法を述べたプリプリント「Characteristic polynomials of isometries of even unimodular lattices」を完成させた.このプレプリントでは,障害の計算の応用として,次数が10または18のSalem数の対数が非射影的なK3曲面の自己同型のエントロピーとして実現されるための必要十分条件をSalem数の最小多項式の言葉で与えている.
|