• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実績報告書

特異点理論の情報幾何学への応用探究~《特異モデルの情報幾何学》の創設

研究課題

研究課題/領域番号 22KJ0052
配分区分基金
研究機関早稲田大学

研究代表者

中島 直道  早稲田大学, 理工学術院, 特別研究員(PD)

研究期間 (年度) 2023-03-08 – 2024-03-31
キーワード情報幾何学 / 特異点理論 / ルジャンドル双対性 / マルコフ連鎖 / ブレグマンダイバージェンス / 最尤推定
研究実績の概要

本年度は以下の課題について取り組んだ.
(1)マルコフ連鎖に付随する遷移確率族の空間における正測度空間の理論の構築:正測度空間の理論とは,離散分布族に備わる双対平坦構造について統計学的に正当なものを探る理論であって,その主たる方法は離散分布族の正規化条件を取って得られる拡大空間上のF-ダイバージェンスとブレグマンダイバージェンスの存在性を調べることである.遷移確率族に対しても,適切な拡大空間を導入しその上のF-ダイバージェンスのクラスを定義した.更に長岡浩司氏(電気通信大学名誉教授)によって与えられた遷移確率族の双対平坦構造と整合性を持つブレグマンダイバージェンスを陽的に与えた.竹内純一氏(九州大学)は拡大マルコフモデルを導入して遷移確率族の拡大空間の理解を試みたが,我々の枠組みはその正確な対象を与えるものである.以上の結果を論文にまとめて投稿を行なっている.
(2)平面曲線の双対平坦幾何と特異点理論:ユークリッド空間における平面曲線の外在的な微分幾何的不変量が,対応する縮閉線(あるいはコースティック)の特異点によって特徴づけられることは古くから知られており,本課題はその双対平坦幾何版を探るものである.双対平坦幾何はリーマン構造とルジャンドル双対性を併せ持つ幾何学であり,これらの観点から縮閉線を定義し,その特異点と曲線の双対平坦幾何的不変量との関係を導出した.さらに関数の特異点論に立脚し縮閉線の分類を行った.これらの結果は統計学等への幅広い応用を持つ.実際,我々の枠組みは指数型分布族における曲指数型分布族への測地線による射影の不定性を記述し,最尤推定やem-アルゴリズム等の多重解問題へ統一的なアプローチを与える.さらに我々の不変量とEfronによって導入された統計的曲率の関係性を調べることでEfronによる議論の精密化を可能にする.以上の結果をまとめた論文を執筆中である.

  • 研究成果

    (11件)

すべて 2024 2023

すべて 雑誌論文 (2件) (うちオープンアクセス 2件) 学会発表 (9件) (うち国際学会 2件、 招待講演 6件)

  • [雑誌論文] Information geometry of positive measures2024

    • 著者名/発表者名
      Naomichi Nakajima
    • 雑誌名

      MI Lecture Note, Institute of Mathematics for Industry, Kyushu University

      巻: 95 ページ: -

    • オープンアクセス
  • [雑誌論文] The space of positive transition measures on a Markov chain2023

    • 著者名/発表者名
      Naomichi Nakajima
    • 雑誌名

      arXiv

      巻: - ページ: -

    • オープンアクセス
  • [学会発表] 双対平坦構造の特異点論的一般化2024

    • 著者名/発表者名
      中島直道
    • 学会等名
      東京大学生産技術研究所 定量生物学研究室 Q-BIO SEMINAR
    • 招待講演
  • [学会発表] 正測度空間の情報幾何学2024

    • 著者名/発表者名
      中島直道
    • 学会等名
      立命館大学幾何学セミナー
    • 招待講演
  • [学会発表] Legendre singularities and Information Geometry2023

    • 著者名/発表者名
      Naomichi Nakajima
    • 学会等名
      WORKSHOP on Algebraic and Analytic Singularities
    • 国際学会
  • [学会発表] Information geometry of positive measures2023

    • 著者名/発表者名
      Naomichi Nakajima
    • 学会等名
      WORKSHOP on Mathematics for Industry
    • 国際学会
  • [学会発表] 正測度空間の情報幾何学~マルコフ過程に対する正測度理論の構築2023

    • 著者名/発表者名
      中島直道
    • 学会等名
      第26回情報論的学習理論ワークショップ (IBIS2023)
  • [学会発表] 特異点論から見る情報幾何学2023

    • 著者名/発表者名
      中島直道
    • 学会等名
      広島大学トポロジー・幾何セミナー
    • 招待講演
  • [学会発表] 非凸ポテンシャルのルジャンドル変換と情報幾何学2023

    • 著者名/発表者名
      中島直道
    • 学会等名
      横国大幾何トポロジーセミナー
    • 招待講演
  • [学会発表] 非凸ポテンシャルのルジャンドル変換と情報幾何学2023

    • 著者名/発表者名
      中島直道
    • 学会等名
      早稲田大学本間研究室セミナー
    • 招待講演
  • [学会発表] 非凸ポテンシャルのルジャンドル変換と情報幾何学2023

    • 著者名/発表者名
      中島直道
    • 学会等名
      埼玉大学幾何セミナー
    • 招待講演

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi