100℃以上の高温・低湿度環境化で作動する、高温作動型固体高分子形燃料電池(HT-PEFC)用電解質膜の作製を目的とした。令和4年度までに、高分子化イオン液体(PIL)被覆粒子の作製および無加湿環境下でのイオン伝導に成功してきており、令和5年度には、PIL被覆粒子のPIL被覆厚および粒径がイオン伝導度に与える影響について明らかにしたほか、緩和時間測定に基づき、イオン伝導挙動を解明した。 これまで、(1-ビニルイミダゾール)(1VIm)とTFSIで構成されるイオン液体モノマーに対し、ナノ粒子表面への高分子被覆手法である粒子共存重合法を適用し、真球状シリカナノ粒子表面にPILを被覆したPIL被覆粒子を作製してきた。この時、添加するイオン液体モノマー量を変更することでPIL被覆厚を変更し、PIL被覆厚に応じてイオン伝導度が向上することを明らかにした。また、直径100 nm、300 nm、500 nmの3種のシリカナノ粒子を用い、PIL被覆厚を一定にした場合、粒径の減少に伴いイオン伝導度が向上することを明らかにした。特に、100 nmのシリカナノ粒子を用いた場合、イオン伝導度測定に用いるPIL被覆粒子の圧着ペレットの充填率は76.3%を達成しており、PIL被覆粒子の圧着により、粒子間に生じた空隙がPILによって満たされ、イオン伝導経路が構築されたと示唆された。さらに、固体NMR法によってPILのホモポリマーとPIL被覆粒子の緩和時間を測定し、PIL被覆粒子表面のPILが、ホモポリマーよりも高い運動性を有することを明らかにした。 以上より、シリカナノ粒子表面にPILを被覆したPIL被覆粒子において、PIL被覆厚およびシリカナノ粒子の粒径がイオン伝導度に与える影響を明らかにしたほか、固体NMR法による緩和時間測定を用い、イオン伝導挙動についても明らかにした。
|