• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実績報告書

物理プロセスを組み込んだ深層学習による水田内温度環境の予測モデルの構築

研究課題

研究課題/領域番号 22KJ0781
配分区分基金
研究機関東京大学

研究代表者

謝 文鵬  東京大学, 生産技術研究所, 特別研究員(PD)

研究期間 (年度) 2023-03-08 – 2024-03-31
キーワードpaddy field / PGNN / water temperature
研究実績の概要

Firstly, a paper titled "Interpretable Framework of Physics-guided Neural Network with Attention Mechanism: Simulating Paddy Field Water Temperature Variations" was published in the esteemed journal WRR. This work elucidates the interpretability of a novel neural network framework integrated with physics guidance and attention mechanisms, specifically applied to simulate variations in paddy field water temperature.
Furthermore, another paper was published in 2022 in the journal Irrigation and Drainage, titled "Development of a short-term hybrid forecast model of paddy water temperature as an alert system for high-temperature damage." This research focuses on the development of a hybrid forecasting model tailored for predicting short-term paddy water temperature variations, crucial for mitigating high-temperature damage in agricultural settings.
Additionally, active participation was observed in the AGU conferences of 2022 and 2023, where presentations were delivered to showcase the latest advancements in the research domain.
In summary, over the course of these two years, significant insights have been gained into the integration of deep learning and physical models, along with an understanding of the advantages that deep learning offers for modeling natural phenomena. This research has notably enhanced the understanding and prediction capabilities of dynamic variations in paddy field temperatures. Moreover, valuable insights have been derived for informing agricultural irrigation systems, policy support, and guiding recommendations aimed at optimizing agricultural yields.

  • 研究成果

    (5件)

すべて 2023

すべて 学会発表 (4件) (うち国際学会 4件、 招待講演 1件) 学会・シンポジウム開催 (1件)

  • [学会発表] Short-Term Prediction Model for Water Levels in Low-Lying Area applying DNN Trained by Observed and Artificially Generated Data2023

    • 著者名/発表者名
      Masaomi Kimura, Kei Awano, Yutaka Matsuno, Wenpeng Xie, Natsuki Yoshikawa
    • 学会等名
      AGU23
    • 国際学会
  • [学会発表] Using Machine Learning Approaches to Reveal the Environmental Drivers of Stomatal Conductance2023

    • 著者名/発表者名
      Hongmei Li, Gang Zhao, Wenpeng Xie, Kei Yoshimura
    • 学会等名
      AGU23
    • 国際学会
  • [学会発表] Physical-Theory Inclusion Neural Network for Accurate Paddy Water Temperature Simulation2023

    • 著者名/発表者名
      Wenpeng Xie, Masaomi Kimura, Runze Tian, Hongmei Li
    • 学会等名
      AGU23
    • 国際学会
  • [学会発表] From Calibration to Parameter Learning: Applying Deep Learning Frameworks to Geoscientific Models2023

    • 著者名/発表者名
      Wenpeng Xie, Kei Yoshimura
    • 学会等名
      CHES annual conforence
    • 国際学会 / 招待講演
  • [学会・シンポジウム開催] AGU232023

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi