• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実績報告書

大規模IoTデータ知識獲得のための信頼される分散型人工知能

研究課題

研究課題/領域番号 22J12681
配分区分補助金
研究機関東京大学

研究代表者

SUN YUWEI  東京大学, 情報理工学系研究科, 特別研究員(DC2)

研究期間 (年度) 2022-04-22 – 2024-03-31
キーワードmachine learning / neural networks / life-long learning / AI security / data privacy / decentralized ML / edge computing / multi-modal
研究実績の概要

The project aims to address the fundamental challenges of decentralized deep learning (DDL) to make AI feasible and scalable for everyone. The proliferation of edge AI applications has been reshaping the contours of future high-performance edge computing, and DDL is a key enabler that would benefit society through distributed model training and globally shared knowledge. In the first phase of the project, we focused on developing collaborative representation learning techniques for different neural network models at the edge. We identified critical challenges and proposed new solutions to privacy protection, edge heterogeneity, and adversarial attacks and defenses in DDL. The proposed methods enable improved model generality to unseen data and robustness against adversarial attacks.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

Representation learning in collaborative and competing neural network models could improve the systems' generality to unseen samples by reusing previous knowledge and experience. Therefore, we set the goal for the first fiscal year as implementing a decentralized deep learning (DDL) framework that incorporates collaborative representation learning techniques and privacy protection measures. Regarding this goal, we focused on developing collaborative representation learning techniques identifying the critical challenges of privacy protection, edge heterogeneity, and adversarial robustness. Experiments were to conducted to evaluate effectiveness and trustworthiness. Given these reasons, we judged that this fiscal year has progressed as planned, and this project is progressing well.

今後の研究の推進方策

In the next phase of the project, we would focus on building reusable knowledge components in conventional large foundation models such as Transformer models. We aim to understand how a decentralized framework coupled with reusable knowledge representations would facilitate an intelligence systems that is capable of life-long learning and swiftly adapting to unseen situations by reusing learned knowledge from past experiences and tasks. We would also continue to investigate such systems' robustness to adversarial attacks and devise effective defense mechanisms. In addition, we look forward to further testing and validating our solutions in real-world scenarios for the learning with multi-modal edge data.

  • 研究成果

    (10件)

すべて 2023 2022

すべて 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件、 オープンアクセス 1件) 学会発表 (9件) (うち国際学会 9件、 招待講演 1件)

  • [雑誌論文] Decentralized Deep Learning for Multi-Access Edge Computing: A Survey on Communication Efficiency and Trustworthiness2022

    • 著者名/発表者名
      Sun Yuwei、Ochiai Hideya、Esaki Hiroshi
    • 雑誌名

      IEEE Transactions on Artificial Intelligence

      巻: 3 ページ: 963~972

    • DOI

      10.1109/TAI.2021.3133819

    • 査読あり / オープンアクセス / 国際共著
  • [学会発表] Meta Learning in Decentralized Neural Networks: Towards More General AI2023

    • 著者名/発表者名
      Yuwei Sun
    • 学会等名
      AAAI/SIGAI Doctoral Consortium
    • 国際学会
  • [学会発表] Meta Learning in Decentralized Neural Networks Through the Lens of Global Workspace Theory2023

    • 著者名/発表者名
      Yuwei Sun
    • 学会等名
      Evolutionary Computation and Machine Learning Group at Victoria University of Wellington
    • 国際学会 / 招待講演
  • [学会発表] UniCon: Unidirectional Split Learning with Contrastive Loss for Visual Question Answering2022

    • 著者名/発表者名
      Yuwei Sun and Hideya Ochiai
    • 学会等名
      NeurIPS Workshop on Self-Supervised Learning
    • 国際学会
  • [学会発表] Feature Distribution Matching for Federated Domain Generalization2022

    • 著者名/発表者名
      Yuwei Sun, Ng Chong, and Hideya Ochiai
    • 学会等名
      Asian Conference on Machine Learning
    • 国際学会
  • [学会発表] Federated Phish Bowl: LSTM-Based Decentralized Phishing Email Detection2022

    • 著者名/発表者名
      Yuwei Sun, Ng Chong, and Hideya Ochiai
    • 学会等名
      IEEE Conference on Systems, Man, and Cybernetics
    • 国際学会
  • [学会発表] Semi-Targeted Model Poisoning Attack on Federated Learning via Backward Error Analysis2022

    • 著者名/発表者名
      Yuwei Sun, Hideya Ochiai, and Jun Sakuma
    • 学会等名
      IEEE International Joint Conference on Neural Networks
    • 国際学会
  • [学会発表] Federated Reinforcement Learning for the Building Facilities2022

    • 著者名/発表者名
      Koki Fujita, Shugo Fujimura, Yuwei Sun, Hiroshi Esaki, and Hideya Ochiai
    • 学会等名
      IEEE International Conference on Omni Layer Intelligent Systems
    • 国際学会
  • [学会発表] A Flexible Distributed Building Simulator for Federated Reinforcement Learning2022

    • 著者名/発表者名
      Shugo Fujimura, Koki Fujita, Yuwei Sun, Hiroshi Esaki, and Hideya Ochiai
    • 学会等名
      IEEE International Conference on Omni Layer Intelligent Systems
    • 国際学会
  • [学会発表] Resilience of Wireless Ad Hoc Federated Learning Against Model Poisoning Attacks2022

    • 著者名/発表者名
      Naoya Tezuka, Hideya Ochiai, Yuwei Sun, and Hiroshi Esaki
    • 学会等名
      IEEE International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications
    • 国際学会

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi