• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実施状況報告書

有効場理論におけるエバネッセント演算子とその漸近挙動の代数的解析

研究課題

研究課題/領域番号 22KJ1072
配分区分基金
研究機関東京大学

研究代表者

CAO Weiguang  東京大学, 理学系研究科, 特別研究員(DC1)

研究期間 (年度) 2023-03-08 – 2025-03-31
キーワードGeneralized symmetry / Conformal field theory / Effective field theory
研究実績の概要

My research focused on studying global symmetries and their consequences in quantum field theories and lattice models. Quantum field theory describes the microscopic physics of the elementary particles (like electron and quark) and lattice models sometimes describe various exotic phases of matter either in theory or in lab. Symmetry plays a vital role in constructing the theory, imposing constraints and solving the systems. Recently, the notion of global symmetry has been generalized. I explored new generalized version of global symmetry by constructing a duality transformation in spin models in (2+1)d with subsystem symmetry which becomes a non-invertible symmetry at the self-dual point. This work opens a new direction in the exploration of generalized symmetry. Furthermore, I studied the subsystem duality transformations systematically in a bulk-boundary point view by proposing the subsystem symmetry topological field theory. I also studied the effects of evanescent operators in theories with O(N) symmetry when N is treated as a continuous variables. I found that the evanescence imposes strong constraints on the spectrum, giving infinite cases of new degeneracies when N takes integer values.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

I have successfully construct the non-invertible symmetry in systems with subsystem symmetry by studying the subsystem Kramers-Wannier duality. This new result has extended my previous construction of subsystem Jordan-Wigner which relating boson and fermionic models with subsystem symmetry. Furthermore, I gave a systematic study of subsystem duality transformations from the bulk-boundary point of view, which generalizes the symmetry topological field theory to encompass models with subsystem symmetry. In the previous year, I have published two papers with a total 37 citations. I was invited to give seminar talks on my work in many distinguished universities and institutes.

今後の研究の推進方策

I plan to further study new generalized symmetries and the constraints they imposes in quantum field theories and lattice models. I plan to study more duality transformations in systems with exotic symmetries, like dipole symmetry and multipole symmetry, to find more examples of non-invertible symmetry. Furthermore, I would like to search the application of the new generalized symmetry that I constructed in realistic models. Finally, I would like to study fermionic evanescent operators using the spinor representation of the O(N) group. I expect to see more new degeneracies with the help of evanescent operators.

  • 研究成果

    (5件)

すべて 2023 その他

すべて 国際共同研究 (3件) 雑誌論文 (2件) (うち国際共著 1件、 査読あり 2件、 オープンアクセス 2件)

  • [国際共同研究] The University of Edinburgh(英国)

    • 国名
      英国
    • 外国機関名
      The University of Edinburgh
  • [国際共同研究] Humboldt University(ドイツ)

    • 国名
      ドイツ
    • 外国機関名
      Humboldt University
  • [国際共同研究] California Institute of Technology/University of California San Diego/Stony Brook University(米国)

    • 国名
      米国
    • 外国機関名
      California Institute of Technology/University of California San Diego/Stony Brook University
  • [雑誌論文] Subsystem non-invertible symmetry operators and defects2023

    • 著者名/発表者名
      Cao Weiguang、Li Linhao、Yamazaki Masahito、Zheng Yunqin
    • 雑誌名

      SciPost Physics

      巻: 15 ページ: 155

    • DOI

      10.21468/SciPostPhys.15.4.155

    • 査読あり / オープンアクセス
  • [雑誌論文] Non-linear non-renormalization theorems2023

    • 著者名/発表者名
      Cao Weiguang、Herzog Franz、Melia Tom、Nepveu Jasper Roosmale
    • 雑誌名

      Journal of High Energy Physics

      巻: 2023 ページ: 080

    • DOI

      10.1007/JHEP08(2023)080

    • 査読あり / オープンアクセス / 国際共著

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi