• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実績報告書

機械学習用データ取引市場を構築するための基盤技術に関する研究

研究課題

研究課題/領域番号 21J23090
配分区分補助金
研究機関京都大学

研究代表者

鄭 舒元  京都大学, 情報学研究科, 特別研究員(DC1)

研究期間 (年度) 2021-04-28 – 2024-03-31
キーワードdata market / privacy protection / data valuation
研究実績の概要

We have made a significant advance in building a reliable data market for machine learning (ML) applications. Concretely, in a collaborative data marketplace where multiple data owners collaborate to train an ML model, it is essential to evaluate the owners' diverse contributions to the model's utility to encourage fair cooperation. However, existing studies have neglected the potential privacy leakage in the contribution evaluation process. We have proposed pioneering methods for privacy-preserving contribution evaluation in collaborative ML to address this significant limitation. Our methods enable buyers to estimate data products' qualities before purchasing without accessing the products and sacrificing data owners' privacy, which considerably promotes reliable data trading.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

We have completed this fiscal year's research plan as scheduled with high quality. We designed a fair, efficient, and privacy-preserving method for evaluating contributions in data trading, which we have published in the top-tier journal PVLDB. Furthermore, we presented the work accomplished in the previous year at the prestigious international conference IEEE BigData 2022.

今後の研究の推進方策

We will initiate a research task on how to prevent data buyers from stealing ML models from prediction API marketplaces. Firstly, we need to investigate and characterize potential adversaries who may attempt model stealing attacks in the prediction API market and define our goals to formulate our research problem. Then, we plan to tackle this challenging problem using a game-theoretical approach. Solving this problem will have significant positive implications for building a reliable and sustainable data marketplace.

  • 研究成果

    (2件)

すべて 2023 2022

すべて 雑誌論文 (1件) (うち査読あり 1件) 学会発表 (1件) (うち国際学会 1件)

  • [雑誌論文] Secure Shapley Value for Cross-Silo Federated Learning2023

    • 著者名/発表者名
      Shuyuan Zheng, Yang Cao, and Masatoshi Yoshikawa
    • 雑誌名

      Proceedings of the VLDB Endowment

      巻: 16 ページ: 1657-1670

    • DOI

      10.14778/3587136.3587141

    • 査読あり
  • [学会発表] FL-Market: Trading Private Models in Federated Learning2022

    • 著者名/発表者名
      Shuyuan Zheng, Yang Cao, Masatoshi Yoshikawa, Huizhong Li, and Qiang Yan
    • 学会等名
      2022 IEEE International Conference on Big Data (IEEE BigData 2022)
    • 国際学会

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi