• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2015 年度 研究成果報告書

一般超幾何関数とモノドロミー保存変形による可積分系の大域的研究

研究課題

  • PDF
研究課題/領域番号 23540247
研究種目

基盤研究(C)

配分区分基金
応募区分一般
研究分野 大域解析学
研究機関熊本大学

研究代表者

木村 弘信  熊本大学, 自然科学研究科, 教授 (40161575)

連携研究者 原岡 喜重  熊本大学, 自然科学研究科, 教授 (30208665)
野海 正俊  神戸大学, 理学系研究科, 教授 (80164672)
岩崎 克則  北海道大学, 理学研究院, 教授 (00176538)
坂井 秀隆  東京大学, 数理科学研究科, 准教授 (50323465)
研究協力者 名古屋 創  
研究期間 (年度) 2011-04-28 – 2016-03-31
キーワード特殊関数 / 可積分系 / Twistor theory / Radon transform / 超幾何関数
研究成果の概要

特殊関数というよい性質を持つ関数の中でガウスの超幾何関数やパンルべ関数は微分方程式の解となる,積分表示をもつ,差分関係式を持つなどで特徴づけられる.これらを一般化し統一的な方法で記述して,その本質を明確にする研究を行った.これらを一般化した一般超幾何方程式(GHGS)と一般Schlesinger系(GSS) はともにグラスマン多様体上で定義された線形,非線形微分方程式系である.GSSの解の中で,GHGSの解で表現される解があるか,どのような形で表示されるかを,Shah & Woodhouseの結果を深めることによって調べた.その副産物として準古典直交多項式との関連を見出した.

自由記述の分野

解析学

URL: 

公開日: 2017-05-10  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi