• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2013 年度 実績報告書

区分的に滑らかな係数を持つ偏微分方程式の解の更なる解析,及び逆問題への応用

研究課題

研究課題/領域番号 23740110
研究機関兵庫県立大学

研究代表者

永安 聖  兵庫県立大学, 物質理学研究科, 講師 (90455684)

キーワード安定性評価 / 偏微分方程式 / 逆問題
研究概要

この研究の目的の一つは,あるパラメータを含む偏微分方程式が与えられたとき,そのパラメータが偏微分方程式の解にどのような影響を及ぼすかを解析することである.
振動数を含む偏微分方程式,特に音響方程式とシュレディンガー方程式の係数決定逆問題の安定性について解析した.この種の逆問題は,振動数を大きくしたときに安定性が良くなることが数値的に確認されている(例えばColton-Haddar-Paina (2003)).本研究で行ったのは,端的に言えばこの現象の数学的証明である.この度行った解析の結果,音響方程式・シュレディンガー方程式のいずれの場合に対しても,この現象を示唆していると思われる安定性評価を得ることができた.特にシュレディンガー方程式の場合は音響方程式の場合よりもよい安定性評価が得られた.ただ今のところ,報告者の知る限り,今回得られた結果を含め,この方向の研究で得られている結果は全て上からの評価のみであり,今後optimalityについての解析が必要であると思われる.
一方,区分的に滑らかな係数を持つ偏微分方程式の解の勾配評価については,非常に具体的な場合として層状の場合の解析を試みた.今のところ成果が出るところまではいっていないが研究の方向性としては間違っていないと思われるので,今後も解析を続けていきたいと考えている.又,層状の場合であれば上からの評価だけではなく下からの評価を得ることも期待できるので,そのことも含めて研究を継続していきたい.

  • 研究成果

    (4件)

すべて 2014 2013 その他

すべて 雑誌論文 (2件) (うち査読あり 2件) 学会発表 (2件) (うち招待講演 2件)

  • [雑誌論文] Increasing stability of the inverse boundary value problem for the Schroedinger equation2014

    • 著者名/発表者名
      Victor Isakov, Sei Nagayasu, Gunther Uhlmann, Jenn-Nan Wang
    • 雑誌名

      Contemporary Mathematics

      巻: 615 ページ: 印刷中

    • 査読あり
  • [雑誌論文] A gradient estimate for solutions to parabolic equations with discontinuous coefficients2013

    • 著者名/発表者名
      Jishan Fan, Kyoungsun Kim, Sei Nagayasu, Gen Nakamura
    • 雑誌名

      Electronic Journal of Differential Equations

      巻: 2013 ページ: 1--24

    • 査読あり
  • [学会発表] Increasing stability in inverse problems for some equations

    • 著者名/発表者名
      永安聖
    • 学会等名
      南大阪応用数学セミナー
    • 発表場所
      大阪府立大学(大阪府)
    • 招待講演
  • [学会発表] Increasing stability of the inverse boundary value problem for the Schroedinger equation

    • 著者名/発表者名
      永安聖
    • 学会等名
      微分方程式セミナー
    • 発表場所
      大阪大学(大阪府)
    • 招待講演

URL: 

公開日: 2015-05-28  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi