研究実績の概要 |
本年度、山辺ソリトンおよび,共形ソリトン理論の進展に寄与する2つの論文を発表した。 一つ目の論文「Complete Steady Gradient Yamabe Solitons with Positive Scalar Curvature Are Rotationally Symmetric」では、正のスカラー曲率を持つ完備安定勾配山辺ソリトンが回転対称であることを証明した。この研究は、Perelman予想の山辺ソリトン版に関するものである。これまでの研究では曲率が正であるという仮定に加えて、局所共形平坦条件のもとで議論されていたが、本研究ではTashiroの研究をもとに局所共形平坦条件を仮定せず、かつ3次元以上の高次元ケースにおいても回転対称性が成立することを示した。二つ目の論文「Revisiting Gradient Conformal Solitons」はAntonio W. Cunha氏, Eudes L. de Lima氏, Henrique F. de Lima氏との共著で、勾配共形ソリトンに関する包括的な検討を行い、特にリッチテンソルの非負条件下での新しい性質や分類結果を導出した。本研究では、ポテンシャル関数に関する条件のもと,ソリトンが自明(定数関数)であることソリトンの自明性を証明した。この論文は数学の国際学術誌への掲載が決定した。 さらに,山辺ソリトンの一般化である,共形ソリトンを部分多様体として考察した Burcu Bektas Demirci氏,Shunya Fujii氏との共著の論文「Generalized Yamabe Soliton Hypersurfaces in Pseudo-Euclidean Spaces」が数学の国際学術誌へ掲載されることが決定した。
|