研究実績の概要 |
本研究の目的は,国産の超高性能な数値計算法であるDE-Sinc法に基づいた様々な計算法に対し,さらなる高性能化と高信頼化を行うことである.自然科学・工学では,扱う対象が解析的な関数であることが多く,この場合は既存の汎用手法に比べDE-Sinc法が非常に高性能であることが知られている.実際,微分・積分の近似計算や,微分方程式・積分方程式の数値計算などに応用されており,高い収束性能があることが報告されている.ただし,DE-Sinc法に基づいた既存の研究結果では,(a)メッシュ幅hとサンプリング数Nの関係式が真に最適ではない,(b)サンプリング数Nに対する誤差の収束速度は解析されているが,誤差の定量的な値は見積もることができない,という二点で改善の余地がある.そこで本研究では,このDE-Sinc法をさらに改善すべく,(a)最適メッシュ幅hの決定法を与え(高性能化),さらに(b)誤差の定量的な見積もりが可能な理論誤差評価を与える(高信頼化)ことを目指す. 令和5年度においては,DE-Sinc法に基づいた関数近似手法において,(a)最適メッシュ幅hの決定法を与え(高性能化),さらに(b)誤差の定量的な見積もりが可能な理論誤差評価を与える(高信頼化)ことを行った.さらに対数的特異性をもつ積分に対するDE-Sinc法に基づいた数値積分法を(i)積分区間が有限区間の場合,(ii)積分区間が半無限区間(0,∞)かつ被積分関数が多項式的減衰をする場合,(iii)積分区間が半無限区間(0,∞)かつ被積分関数が指数的減衰をする場合,の3つのケースについて考え,やはり高性能化および高信頼化を行った.さらに隣接するサブテーマとして,DE-Sinc法に基づいた畳み込みの数値積分法を提案した.これは種々の応用が期待されるテーマである.
|