• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実施状況報告書

血中細胞外小胞因子を加えた機械学習による脂肪性肝疾患からの発癌高危険群の同定

研究課題

研究課題/領域番号 23K06397
研究機関東京大学

研究代表者

佐藤 雅哉  東京大学, 医学部附属病院, 講師 (30722665)

研究分担者 大塚 基之  東京大学, 医学部附属病院, 届出研究員 (90518945)
研究期間 (年度) 2023-04-01 – 2026-03-31
キーワード細胞外小胞
研究実績の概要

NASH/NAFLDを背景とした肝癌の臨床現場では、患者数の多い「肝線維化がまだ進んでいないNAFLD症例」から発生する肝癌のスクリーニング方法が確立されておらず、臨床的に大きな問題となっている。これまで肝癌の臨床に従事する傍ら、機械学習を用いて多種類の臨床パラメーターから感度良く肝癌を検知するアルゴリズムを島津製作所と共同で開発してきた経験を背景として、本研究では「非線維化NAFLD由来の肝癌高危険群の囲い込み」に焦点を絞り、肝細胞膜の状態を反映していると考えられる血清中の細胞外小胞の情報と各種臨床的パラメーターを組み合わせた深層学習による肝癌高危険群の囲い込みをめざしている。本研究の特徴は、血中の細胞外小胞をバルクで観察するのではなく、よりNAFLDの状態を反映している肝細胞由来の小胞のみを単離して特徴を解析する点である。そのうえで、既存の臨床因子と合わせた機械学習を通じて、肝癌高危険群の検知に最適なアルゴリズムを樹立する。「血中細胞外小胞の由来臓器特異的サブセットの単離に基づく研究」と「深層学習を用いた疾患感知アルゴリズム研究」の両者を融合し、新規知見の獲得と臨床への貢献をめざしている点である。
本年度は、NASH患者の血清から肝由来の細胞外小胞を単離するべく、特異的マーカーの同定をデータベースを用いて行い、さらにその発現状況を細胞染色やRT-PCRによって確認して特異的マーカーとして用いうることを確認した。これらの結果から、今後は肝疾患患者の血清から肝細胞由来と思われる細胞外小胞のみを単離して、実際の状況を検討していく。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

肝臓由来の細胞外小胞を特異的に単離し、その特徴を検討することで肝病態、特にNAFLD関連肝発癌の高危険群を反映するパラメーターを探索し、機械学習と組み合わせた応用をめざしているが、本年度は、血清中の細胞外小胞を一括で解析するのではなく、肝細胞由来のサブセットを単離して肝病態を反映する特徴を検索する点で進捗があったので、おおむね良好に進捗していると判断した。

今後の研究の推進方策

本年度の成果をもとにして、今後は、細胞外小胞の内容物を検索するのではなく、NASHという病態に基づく肝細胞膜の脂質・蛋白組成変化の特徴を、細胞外小胞をサロゲートマーカーとして検出する。特に、肝癌自体をとらえるのではなく「発癌高危険群の囲い込み」を試みる目的で、臨床的なパラメータを含めてdeep learning の手法と合わせた検討をしていく。

次年度使用額が生じた理由

本年度の使用予定だった試薬が、4月以降にならないと製品化されないとのことだったため、本年度使用予定の5万円を次年度に繰り越して使用する予定とした。

  • 研究成果

    (3件)

すべて 2024 2023

すべて 雑誌論文 (3件) (うち査読あり 3件、 オープンアクセス 3件)

  • [雑誌論文] The impact of COVID-19 on the diagnosis and treatment of HCC: analysis of a nationwide registry for advanced liver diseases (REAL)2024

    • 著者名/発表者名
      Okushin Kazuya、Tateishi Ryosuke、Hirakawa Shinya、Tachimori Hisateru、Uchino Koji、Nakagomi Ryo、Yamada Tomoharu、Nakatsuka Takuma、Minami Tatsuya、Sato Masaya、Fujishiro Mitsuhiro、Hasegawa Kiyoshi、Eguchi Yuichiro、Kanto Tatsuya、Yoshiji Hitoshi、Izumi Namiki、Kudo Masatoshi、Koike Kazuhiko
    • 雑誌名

      Scientific Reports

      巻: 14 ページ: -

    • DOI

      10.1038/s41598-024-53199-6

    • 査読あり / オープンアクセス
  • [雑誌論文] Machine learning for individualized prediction of hepatocellular carcinoma development after the eradication of hepatitis C virus with antivirals2023

    • 著者名/発表者名
      Minami Tatsuya、Sato Masaya、et al.
    • 雑誌名

      Journal of Hepatology

      巻: 79 ページ: 1006~1014

    • DOI

      10.1016/j.jhep.2023.05.042

    • 査読あり / オープンアクセス
  • [雑誌論文] Development of a transformer model for predicting the prognosis of patients with hepatocellular carcinoma after radiofrequency ablation2023

    • 著者名/発表者名
      Sato Masaya、Moriyama Makoto、Fukumoto Tsuyoshi、Yamada Tomoharu、Wake Taijiro、Nakagomi Ryo、Nakatsuka Takuma、Minami Tatsuya、Uchino Koji、Enooku Kenichiro、Nakagawa Hayato、Shiina Shuichiro、Koike Kazuhiko、Fujishiro Mitsuhiro、Tateishi Ryosuke
    • 雑誌名

      Hepatology International

      巻: 18 ページ: 131~137

    • DOI

      10.1007/s12072-023-10585-y

    • 査読あり / オープンアクセス

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi