• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実施状況報告書

Developing an integrated account of intentions and affordances for a model of visual attention

研究課題

研究課題/領域番号 23K11169
研究機関岡山大学

研究代表者

Yucel Zeynep  岡山大学, 環境生命自然科学学域, 准教授 (20586250)

研究期間 (年度) 2023-04-01 – 2025-03-31
キーワードsaliency / affordance / segmentation
研究実績の概要

We examined the performance of four recent saliency models EML-NET, SalGAN, DeepGaze IIE, and DeepGaze on images of hand tools. These objects have distinct segments with various roles, and studies suggest that tool segments inherently attract human attention. We tested the models on a dataset containing both tool and non-tool images, then compared their predictions with human gaze data using six criteria. The results show that the models often struggle to predict saliency accurately for tool images compared to non-tool images. This suggests a need to address this limitation in saliency modeling for tool-specific contexts.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

We have demonstarted that the existing state-of-the-art saliency models are not as efficient in representing eye gaze patterns over tool images as they are in representing the eye gaze patterns over other images from ordinary daily life scenes. This justifies an effort to improve the existing methods.

今後の研究の推進方策

We focus on the state-of-the-art visual saliency prediction model of DeepGaze IIE and make an effort to refine it to account for this bias. Since the integration of transfer learning into saliency prediction over the last decade has notably enhanced prediction performance, we will initially curate a custom image data set featuring tools, non-tools and ambiguous images and record empirical gaze data from human participants to be used in fine-tuning. In this way, we will improve the model’s performance for this specific stimulus category and evaluate it by IG and NSS metrics.

  • 研究成果

    (4件)

すべて 2023

すべて 学会発表 (4件)

  • [学会発表] Effect of tool specificity on the performance of DNN-based saliency prediction methods2023

    • 著者名/発表者名
      Kengo Matsui, Timothee Languille, Zeynep Yucel
    • 学会等名
      International Conference on Smart Computing and Artificial Intelligence (SCAI 2023)
  • [学会発表] Experiment design and verification for assessing the acquisition of strategic planning ability2023

    • 著者名/発表者名
      Natchanon Manatphaiboon, Shogo Hamachi, Zeynep Yucel, Pattara Leelaprute, Akito Monden
    • 学会等名
      International Conference on Learning Technologies and Learning Environments (LTLE 2023)
  • [学会発表] Dependence of perception of vocabulary difficulty on contexture2023

    • 著者名/発表者名
      Parisa Supitayakul, Rika Kuramitsu, Zeynep Yucel, Akito Monden, Koichi Takeuchi
    • 学会等名
      International Conference on Learning Technologies and Learning Environments (LTLE 2023)
  • [学会発表] Using a personality-aware recommendation system for comparing inventory performances2023

    • 著者名/発表者名
      Natsu Nishimura, Zeynep Yucel, Akito Monden
    • 学会等名
      International Conference on Smart Computing and Artificial Intelligence (SCAI 2023)

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi