• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実施状況報告書

Prediction of microstructure degradation in SOFC electrodes by unsupervised neural networks

研究課題

研究課題/領域番号 23K13261
研究機関東京大学

研究代表者

Sciazko Anna  東京大学, 生産技術研究所, 特任助教 (30898945)

研究期間 (年度) 2023-04-01 – 2025-03-31
キーワードSolid Oxide Fuel Cell / Degradation / Machine Learning / Unsupervised learning / Microstructure
研究実績の概要

Electrochemical devices such as fuel cells, electrolyzers, and batteries undergo microstructural changes during long-term operation, leading to performance deterioration. Predicting these changes is challenging due to incomplete understanding of underlying mechanisms and limited experimental data availability.
In FY2023, a machine learning framework was proposed for predicting microstructure modifications during the reduction process of nickel-based Solid Oxide Fuel Cell (SOFC) anodes. The framework integrates unsupervised neural networks (UNIT) and conditional unsupervised neural networks (C-UNIT). These algorithms were tested on simplified toy problems and for predicting microstructural changes in real SOFC anodes, achieving not only a high visual agreement with real experimental data but also fitting characteristic microstructural parameters.
Moreover, experimental studies were conducted to understand the influence of process conditions on the reduction and oxidation of Ni-yttria stabilized zirconia (YSZ) and Ni-gadolinium doped ceria (GDC) anodes. The investigated conditions included temperature (ranging from 500°C to 1000°C), reduction time, and the number of redox cycles.
The proposed method has the potential to simulate not only microstructural changes during redox cycling but also various degradation processes.

現在までの達成度 (区分)
現在までの達成度 (区分)

1: 当初の計画以上に進展している

理由

The Ni-YSZ and Ni-GDC SOFC fuel electrodes were successfully fabricated, and redox tests and morphological characterizations were conducted. Machine learning algorithms for the prediction of morphology changes from a limited experimental dataset were developed. The achieved pixel-wise prediction accuracy for the toy problems was over 98%, and good agreement was achieved for the microstructural parameters between real and artificially degraded microstructures.
The feasibility of the conditional C-UNIT algorithm was tested on the reduction of Ni-YSZ anode conducted at different temperatures. The C-UNIT was able to predict various dominant processes depending on the external conditions, resulting in drastic differences in the final microstructures.

今後の研究の推進方策

The planned research involves the application of developed machine learning algorithms for the quantitative predictions of SOFC electrode redox processes depending on various external conditions. In particular, it is planned to incorporate the reduction time as a C-UNIT condition, enabling time-dependent predictions. Additionally, it is planned to investigate the effect of the initial sample microstructure on reduction and redox processes. The samples with various microstructures will be prepared by modifying the initial powder composition to influence phase fractions, isostatic pressing of the screen-printed anodes to influence porosity, and increasing the sintering temperature to influence particle size.
In the scope of algorithm development, an extension to physics-informed UNIT (PINN-UNIT) is planned to include physical constraints in the loss function, transforming the black-box machine learning approach into a grey-box model. Additionally, further study on the 3D versions of UNIT, C-UNIT, and PINN-UNIT is currently undergoing research.

次年度使用額が生じた理由

The reduced spending in FY2023 is due to the plan of purchase of high performance GPU card shifted to FY2024 as the newer NVIDIA GPU with improved computing capabilities will be released. The usage plan in FY2024 include the purchase of additional GPU card for speeding-up the 3D microstructural calculations.

  • 研究成果

    (8件)

すべて 2024 2023

すべて 雑誌論文 (5件) (うち国際共著 5件、 査読あり 5件、 オープンアクセス 1件) 学会発表 (3件) (うち国際学会 2件)

  • [雑誌論文] Prediction of electrode microstructure evolutions with physically constrained unsupervised image-to-image translation networks2024

    • 著者名/発表者名
      Sciazko Anna、Komatsu Yosuke、Shimura Takaaki、Shikazono Naoki
    • 雑誌名

      npj Computational Materials

      巻: 10 ページ: 1~15

    • DOI

      10.1038/s41524-024-01228-3

    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Influence of Transition Metal Elements on Ni Migration in Solid Oxide Cell Fuel Electrodes2023

    • 著者名/発表者名
      Ouyang Zhufeng、Sciazko Anna、Komatsu Yosuke、Nishimura Katsuhiko、Shikazono Naoki
    • 雑誌名

      Journal of The Electrochemical Society

      巻: 170 ページ: 124511~124511

    • DOI

      10.1149/1945-7111/ad11b2

    • 査読あり / 国際共著
  • [雑誌論文] Three dimensional microstructures of carbon deposition on Ni-YSZ anodes under polarization2023

    • 著者名/発表者名
      Cui Dongxu、Sciazko Anna、Komatsu Yosuke、Nakamura Akiko、Hara Toru、Wu Shiliang、Xiao Rui、Shikazono Naoki
    • 雑誌名

      Journal of Energy Chemistry

      巻: 87 ページ: 359~367

    • DOI

      10.1016/j.jechem.2023.08.035

    • 査読あり / 国際共著
  • [雑誌論文] Correlation Between Microstructure and Performance of GDC-Based Electrodes2023

    • 著者名/発表者名
      Sciazko Anna、Komatsu Yosuke、Shimura Takaaki、Sunada Yusuke、Shikazono Naoki
    • 雑誌名

      ECS Transactions

      巻: 111 ページ: 349~356

    • DOI

      10.1149/11106.0349ecst

    • 査読あり / 国際共著
  • [雑誌論文] Effects of Transition Metal Elements on Ni Migration in Solid Oxide Cell Fuel Electrodes2023

    • 著者名/発表者名
      Ouyang Zhufeng、Sciazko Anna、Komatsu Yosuke、Katsuhiko Nishimura、Shikazono Naoki
    • 雑誌名

      ECS Transactions

      巻: 111 ページ: 171~179

    • DOI

      10.1149/11106.0171ecst

    • 査読あり / 国際共著
  • [学会発表] Correlation Between Microstructure and Performance of GDC-Based Electrodes2023

    • 著者名/発表者名
      Sciazko Anna、Komatsu Yosuke、Shimura Takaaki、Sunada Yusuke、Shikazono Naoki
    • 学会等名
      18th International Symposium on Solid Oxide Fuel Cells (SOFC-XVIII)
    • 国際学会
  • [学会発表] Effects of Transition Metal Elements on Ni Migration in Solid Oxide Cell Fuel Electrodes2023

    • 著者名/発表者名
      Ouyang Zhufeng、Sciazko Anna、Komatsu Yosuke、Katsuhiko Nishimura、Shikazono Naoki
    • 学会等名
      18th International Symposium on Solid Oxide Fuel Cells (SOFC-XVIII)
    • 国際学会
  • [学会発表] ガドリニウムドープセリア固体酸化物形電解セル燃料極の性能と安定性2023

    • 著者名/発表者名
      シチョンシコ アンナ,小松洋介,志村敬彬,鹿園直毅
    • 学会等名
      第32回SOFC研究発表会

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi