• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実施状況報告書

Neural circuitry of predictions and prediction errors in the auditory system

研究課題

研究課題/領域番号 23K14298
研究機関東京大学

研究代表者

Yaron Amit  東京大学, ニューロインテリジェンス国際研究機構, 特任研究員 (90895731)

研究期間 (年度) 2023-04-01 – 2026-03-31
キーワードPredictive Coding / Auditory Cortex / Neural Encoding / Omission Responses / Error Signaling / Prediction Error Neurons
研究実績の概要

This fiscal year, we made significant strides in predictive coding research within the rat auditory cortex. We identified neurons that robustly respond to omitted auditory stimuli, indicative of their role in encoding negative prediction errors. These neurons actively update their predictions, correlating their responses with the likelihood of expected tones. Our findings, detailed in a nearly completed paper, align well with our initial research plan and enhance our understanding of predictive mechanisms in the brain. Additionally, we have begun preliminary work with awake and with behaviorally trained rats, laying the groundwork for future studies that integrate behavioral responses with neural data.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

Our research is advancing smoothly and efficiently. We've achieved better-than-expected results with anesthetized rats, identifying key neurons in the auditory cortex that are instrumental in predictive coding. These neurons have shown unique response patterns to omitted auditory stimuli, indicating their crucial role in encoding prediction errors.
Given the significance of these findings, we decided to fully explore this avenue with anesthetized animals before moving on to experiments involving awake, behaviorally trained rats. This strategic focus allows us to deepen our understanding and solidify our results in a controlled setting.

We are in the process of finalizing a manuscript that details these discoveries and presenting it at international and local conferences.

今後の研究の推進方策

As we plan future work, we will first finalize and submit our manuscript detailing predictive coding insights from anesthetized rats. Simultaneously, we'll develop a second paper expanding the computational modeling based on these results, enhancing our model with additional experiments.

The next phase, which we already started, involves recording from higher brain areas (like PFC) and in awake rats to identify prediction signals. This step is crucial for understanding how the brain processes expected versus actual sensory inputs in real time.

In addition, we will work on establishing the awake behaving setup in a way that will compliment our current findings.

次年度使用額が生じた理由

We did not purchase new Neuropixels electrodes this year and will use the added amount to being able to purchase the latest model.

  • 研究成果

    (4件)

すべて 2024 2023

すべて 雑誌論文 (2件) 学会発表 (2件)

  • [雑誌論文] Common Mechanism Underlying Multimodal Integration2023

    • 著者名/発表者名
      Xu Hexin、Yaron Amit、Shiramatsu Tomoyo Isoguchi、Takahashi Hirokazu
    • 雑誌名

      2023 15th Biomedical Engineering International Conference (BMEiCON)

      巻: 1 ページ: 1-5

    • DOI

      10.1109/BMEiCON60347.2023.10322007

  • [雑誌論文] Individual Difference in the Perception of Multimodal Illusions2023

    • 著者名/発表者名
      Hexin XU Amit YARON Tomoyo Isoguchi SHIRAMATSU Hirokazu TAKAHASHI
    • 雑誌名

      聴覚研究会資料= Proceedings of the auditory research meeting

      巻: 53 ページ: 85-90

  • [学会発表] Negative Prediction-Error Neurons in Rat Auditory Cortex: Response Properties and Implications for Predictive Coding Circuits2024

    • 著者名/発表者名
      Amit YARON, Tomoyo SHIRAMATSU-ISOGUCHI, Felix KERN, Hirokazu TAKAHASHI, Zenas C. CHAO
    • 学会等名
      10th Mismatch Negativity Conference, Salamanca (Spain)
  • [学会発表] Microcircuitry of Predictive Coding: Omission Responses and Probability Encoding in the Rat Auditory Cortex2024

    • 著者名/発表者名
      Amit YARON, Tomoyo SHIRAMATSU-ISOGUCHI, Felix KERN, Hirokazu TAKAHASHI, Zenas C. CHAO
    • 学会等名
      NEURO2024 (JNS)

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi