研究実績の概要 |
モチーフの理論は数論幾何学,代数幾何学における重要な研究対象である.これに大きな進展をもたらしたVoevodskyのモチーフ理論はアフィン直線にたいするホモトピー不変性が理論の前提になっている.しかし代数幾何学の様々な基本的な不変量(例えば微分形式の層のコホモロジー)はホモトピー不変性を満たさない.当該研究では,Voevodskyのモチーフ理論を拡張し,ホモトピー不変でない不変量をも包括する新たなモチーフの理論を構築するためにVoevodskyの理論で中核的役割をはたす「ホモトピー不変性層」を拡張する「相互層」を新たに導入した.一方, Voevodskyの理論を拡張する別のアプローチとして,Binda, Park, Ostvaerによる対数的モチーフの三角圏 lDM の構築がある.本年度の成果は,相互層のNisnevichコホモロジーが対数的モチーフの三角圏lDMにおいて表現可能であることを示し,相互層の理論と対数的モチーフ理論の関係を明らかにしたことである.これを詳しく説明する. lSmを体k上有限型な対数的に滑らかな対数的スキームの圏とし,Shv(lSm)をlSm上のtransfer構造を持つNisnevich層のなす圏とする.BindaとMerici はlDM上に自然なt-構造を定義し,そのheartがShv(lSm)のある充満部分圏lCIに一致することを証明した.本年度の成果は以下の定理である.RSCを相互層のなす圏とするとき充満忠実な完全関手 Log : RSC → lCI が存在する.さらに相互層Fとk上の滑らかなスキームXにたいし同型 H^i_{Nis} (X,F) = Hom_(lDM ) (M(X,triv),Log(F)[i]) が成立する.ここで左辺はXのNisnevichkホモロジーで,(X,triv)はXに自明な対数構造を与えた対数スキームである.
|