• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2021 年度 実績報告書

Perverse sheaves and schobers

研究課題

研究課題/領域番号 20H01794
配分区分補助金
研究機関東京大学

研究代表者

Bondal Alexey  東京大学, カブリ数物連携宇宙研究機構, 客員上級科学研究員 (00726408)

研究分担者 大川 新之介  大阪大学, 大学院理学研究科, 准教授 (60646909)
桑垣 樹  大阪大学, 大学院理学研究科, 助教 (60814621)
KAPRANOV MIKHAIL  東京大学, カブリ数物連携宇宙研究機構, 教授 (90746017)
研究期間 (年度) 2020-04-01 – 2025-03-31
キーワードDerived categories / schobers / Floor theory / noncommutative / resolutions
研究実績の概要

The principal investigator A. Bondal developed the theory of noncommutative resolutions in the geometric and algebraic contexts. Algebraic resolutions were constructed via generalized noncommutative differential calculus for a collection of algebras and homomorphisms between them. Noncommutative resolutions for non-normal algebraic varieties were constructed in collaboration with co-Investigator S. Okawa by means of the universal fibered and cofibered squares.
Co-investigator M. Kapranov (in collaboration with V. Schechtman) explicitly described perverse sheaves on the Ran space of the complex line. The categorical interpretations of this construction was explored.
Co-investigator S. Okawa proved that the category of coherent right modules over a smooth noncommutative surface finite over its center is equivalent to a direct summand of the category of coherent sheaves of a smooth tame algebraic stack, which is canonically associated to it, thereby confirming that such nc surfaces are noncommutative geometric schemes in the sense of Orlov. The paper on this results is submitted to the electronic arxive.
As a byproduct of his research on sheaf-theoretic quantization co-investigator T.Kawasaki found a sheaf-theoretic version of the bounding cochain, which was known before in the context of Floer theory.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

COVID restrictions did not allow to implement the travel plans and to invite people collaborators from oversees.

今後の研究の推進方策

We will develop the study of noncommutative resolutions via exact categories. We expect to obtain various schobers which govern the families of noncommutative resolutions of a category by means of varying exact structures on the category and considering the corresponding derived categories. We plan to apply this technique to constructing schobers of resolutions for finite dimensional algebras, as well as schobers of singularities of varieties.

We will work on the conjectural relationship between affine Weyl groups and polarizations of nc del Pezzo surfaces, and phantoms and quasi-phantom categories in positive characteristics.

Our new formalism of nonexact sheaf quantization at least enables us to formulate the sheaf theoretic side of the expected correspondence between sheaf quantization and Floer theory. We plan to explore the Floer side and the correspondence in the next year.

  • 研究成果

    (7件)

すべて 2023 2022

すべて 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件、 オープンアクセス 1件) 学会発表 (5件) (うち国際学会 5件、 招待講演 5件) 学会・シンポジウム開催 (1件)

  • [雑誌論文] Flops and spherical functors2022

    • 著者名/発表者名
      Bodzenta Agnieszka、Bondal Alexey
    • 雑誌名

      Compositio Mathematica

      巻: 158 ページ: 1125~1187

    • DOI

      10.1112/S0010437X22007497

    • 査読あり / オープンアクセス / 国際共著
  • [学会発表] Derived categories of complex manifolds, their DG-enhancement and Bott-Chern classes2022

    • 著者名/発表者名
      Alexey Bondal
    • 学会等名
      Beijing-Moscow Mathematics Colloquium
    • 国際学会 / 招待講演
  • [学会発表] Two derived categories of a generic complex torus2022

    • 著者名/発表者名
      Alexey Bondal
    • 学会等名
      Conference on Algebraic Geometry
    • 国際学会 / 招待講演
  • [学会発表] An introduction to perverse schober,2022

    • 著者名/発表者名
      Tatsuki Kuwagaki
    • 学会等名
      FGC-Higher Structures Seminars
    • 国際学会 / 招待講演
  • [学会発表] Perverse sheaves and schobers on symmetric products3 Name of Conference2022

    • 著者名/発表者名
      Mikhail Kapranov
    • 学会等名
      Noncommutative Shapes
    • 国際学会 / 招待講演
  • [学会発表] The PROB of graded bialgebras, perverse sheaves on configuration spaces and Hecke algebroids2022

    • 著者名/発表者名
      Mikhail Kapranov
    • 学会等名
      International workshop of the research group ANR Catore at the University Paris-Cite 4 Year of presentation 2022
    • 国際学会 / 招待講演
  • [学会・シンポジウム開催] CURRENT TRENDS IN THE CATEGORICAL APPROACH TO ALGEBRAIC AND SYMPLECTIC GEOMETRY2023

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi