研究実績の概要 |
今年度は、まず、中心上有限な非特異非可換代数曲面に関してEleonore Faber(Leeds大)、Colin Ingalls(Carleton大)、Matthew Satriano(Waterloo大)諸氏と研究した。その成果をarXiv:2206.13359として発表した(to appear in TAMS)。主結果は、上記のような非可換非特異代数曲面に対して非特異なArtin stackを構成する手続きを与え、その上の連接層のなすabel圏の1つの既約成分が非可換代数曲面上の連接層のabel圏と同値になることを証明したというものである。特にそのような非可換代数曲面がOrlovの意味のgeometric noncommutative schemeであることがわかった。 また、Colin Ingalls、Susan Sierra(Edinburgh大)、Michel Van den Bergh(Hasselt大)諸氏と非可換3次曲面について研究し、一般のR(1,3)型非可換3次元射影空間の3次曲面を非可換射影平面の6点爆発として記述することに成功した(論文準備中)。具体的には、非可換6点爆発にそのambient spaceとして得られる非可換3次元射影空間を対応させる対応をモジュライ空間の間の有理射として定義し、それが極めて初等的な2つの有理射の合成であることを証明した。前者は6次元のアーベル多様体になるが、その上にE6型のWeyl群が自然に作用しており、その商が重み付き射影空間P(1,1,1,2,2,2,3)となる。一方、後者のモジュライ空間は重み付き射影空間P(1,1,1,2,2,2)である。主結果は、重み付き射影空間の最後の座標を忘れる有理射と商射の合成が、上述の有理射に一致するというものである。主結果のフォーミュレーションを見出すまでが困難であったが、一度それがわかってからは、直線加群のHilbert schemeを利用する議論が比較的すぐに思いついたので解決することができた。
|