研究課題/領域番号 |
20H04154
|
配分区分 | 補助金 |
研究機関 | 東京工業大学 |
研究代表者 |
原 祐子 東京工業大学, 工学院, 准教授 (20640999)
|
研究期間 (年度) |
2020-04-01 – 2025-03-31
|
キーワード | 近似計算 / 組み込みシステム |
研究実績の概要 |
Internet of Things (IoT) デバイスの発展に伴い、益々膨大なデータが生成される中、IoT/組込みシステム上で即時にデータ処理するエッジコンピューティング技術の確立は、学術研究発展・市場開拓にとって喫緊の課題である。IoTアプリケーションの多くは、多少の計算誤差を許容可能な特徴があり、近似計算という新しいデータ処理技術は、上記の課題の大きなブレークスルーになる。本研究は、IoTアプリケーションを適切に近似計算するための基礎技術を確立する。特に「どの程度」と「どのぐらいの頻度で」という2つの大きな問いに答えるため、近似計算の学術基盤と効率的な利活用技術を確立する。 研究代表者は、過去の研究成果から実用時間内で解析するためにはアルゴリズムとデータの切り離しが重要であるという知見を得た。本研究でも同様に、対アルゴリズムの定性的モデルと対データの定量的解析を併用して、解析時間と精度の実用性を両立することを検討する。 本年度は、まず具体的なアプリケーション(ヘルスケアやネットワークのパケットルーティング制御等)へ近似計算を適用するケーススタディを通して、上記のモデルを構築する上での問題点や知見を抽出した。また、そのアプリケーションのアクセラレータ設計において、近似計算手法の適用による効果を定量的に評価した。さらに、近似計算の誤差の評価指標についても検討を行った。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
本年度は、当初の計画通り、ヘルスケアやロボット制御などの具体的なアプリケーションへ近似計算を適用するケーススタディを通して、近似計算手法適用のための解析モデルを構築する上での問題点や知見を明らかにした。また、そのアプリケーションのアクセラレータ設計において、近似計算手法の適用による効果(回路面積や近似計算による誤差の大きさ)を定量的に評価した。さらに、近似計算の誤差の評価指標についても検討を行った。
|
今後の研究の推進方策 |
本年度の成果を基に、組み込みシステムの近似化の定量モデルを確立するとともに、その他のプログラム解析への応用発展の可能性を検討する。また、本年度に引き続き、具体的なアプリケーションを対象に、ソフトウェア及びハードウェアへの最適な近似計算手法の探索方法の確立を目指す。
|