一般物体認識に代表されるクラス数が非常に多い多クラス分類を考える。このような場合、クラスごとの訓練データ数が均等になることはなく意図的に調整されない限りは一般的にロングテールの分布になる。このような超不均衡なクラス分布に対処するために、さまざまな手法が開発されている。 超不均衡クラス分布における手法として、近年Weight balancingという方法が既存手法と比較して性能が良いことが知られている。通常、不均衡クラス分布の問題は損失関数を工夫するなど複雑な方法が主流であったが、Weight balancingは、2段階ステップとweight decayを用いた通常の学習と重みを調整する学習の2段階の方法で既存手法よりも性能が良いことが分かっている。しかし、なぜこの方法が効果的なのかについて今だわかっていなかった。 本研究では、Neural collapse現象とReluネットワークの持つコーン効果と呼ばれる性質に着目してWeight balancingを理論的に解析をおこなった。 その結果、weight balancingは、1段階目の訓練でweight decayとクロスエントロピー損失によって特徴抽出器のフィッシャーの判別比を増加させ、2段階目の訓練でweight decayとクラスバランス損失によって暗黙的なロジット調整を引き起こすことがわかった。ロジットは予測の不確実性を表現する関数であることから不均衡クラス分布のデータにおいても予測の不確実性が重要であることがわかった。さらに、この解析結果からロジット調整を1段階目の訓練後に行うだけで既存のweight balancingと同程度の結果を得ることができることを示した。すなわち2段階目の学習が必要がないことを示した。これにより超不均衡クラス分布の問題はほとんど通常の問題と同様に学習すればよいことを示せた。
|