研究実績の概要 |
前年度に引き続き,非線形熱方程式の爆発解の研究を行った.具体的には高橋仁氏(東京工業大学) と共同で,全空間において定義されたべき乗型非線形項をもつ熱方程式(藤田型方程式)の有限時間爆発解に対し,自然なスケール変換に関して不変となる臨界ルベーグノルム(臨界ノルム)が爆発時刻付近でどのように振舞うかについて考察した.前年度までの研究によりソボレフ優臨界の場合に,臨界ノルムの上極限が無限大になることを証明することができたが,下極限の挙動は未解明であった.今年度我々はこの問題に取り組み,下極限も無限大になることを示すことができた.本結果は[Brezis, Cazenave, J. Anal. Math. (1996)]において言及されている未解決問題の一つを全空間の場合に肯定的に解決する結果となる.この結果の証明においては[Seregin, Comm. Math. Phys. (2012)]や我々の以前の研究でも用いられたblow up法が基礎となるが,爆発点近傍でリスケールされた解の列の強コンパクト性を示すために,defect measureと呼ばれるラドン測度の解析を行うことが重要となる.また極限関数の考察のため可微分性の低い解に対する局所正則性理論を構築する必要がある.これらの解析には[Giga, Kohn, Comm. Pure Appl. Math.(1985)]によって導入された重み付きエネルギーと,その単調性公式を用いる.
|