• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実績報告書

Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes

研究課題

研究課題/領域番号 22H03600
配分区分補助金
研究機関国立研究開発法人理化学研究所

研究代表者

WAHIB MOHAMED  国立研究開発法人理化学研究所, 計算科学研究センター, チームリーダー (00650037)

研究分担者 ドローズド アレクサンドロ  国立研究開発法人理化学研究所, 計算科学研究センター, 研究員 (90740126)
研究期間 (年度) 2022-04-01 – 2026-03-31
キーワードNeural Networks
研究実績の概要

In this fiscal year we developed an approach that automatically generated neural networks. Neural architecture search is an effective approach for automating the design of deep neural networks. Evolutionary computation (EC) is commonly used in Neural architecture search due to its global optimization capability. However, the evaluation phase of architecture candidates in EC-based NAS is compute-intensive, limiting its application for many real-world problems. To overcome this challenge, we proposed a novel progressive evaluation strategy for the evaluation phase in convolutional neural network architecture search, in which the number of training epochs of network individuals is progressively increased. Our proposed algorithm reduces the computational cost of the evaluation phase and promotes population diversity and fairness by preserving promising networks based on their distribution. We evaluated the proposed progressive evaluation and sub-population preservation of neural architecture search (PEPNAS) algorithm on the CIFAR10, CIFAR100, and ImageNet benchmark datasets, and compare it with 36 state-of-the-art algorithms, including manually designed networks, reinforcement learning (RL) algorithms, gradient-based algorithms, and other EC-based ones. The experimental results demonstrate that PEP-NAS effectively identifies networks with competitive accuracy while also markedly improving the efficiency of the search process.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

The project is progressing as expected. We were capable of publishing several papers.

今後の研究の推進方策

Our plan for the next fiscal year is to incorporate our approach to auto-generate neural networks by proposing a progressive neural predictor that uses score-based sampling to improve the performance of the surrogate model with limited training data. Different from existing algorithms that rely on initial sample selection uses an online method to progressively select new samples of the surrogate model based on potential information from the previous search process. During the iterative process, the sampled scores are dynamically adjusted based on the prediction rankings in each round to keep track of good architectures, which gradually optimises the surrogate model. In this way, the processes of training the predictor and searching for architectures are jointly combined to improve the efficiency of sample utilization. In addition, the surrogate model with different degrees of training is assigned prediction confidence equal to the accuracy of the current stage.

  • 研究成果

    (4件)

すべて 2024 2023

すべて 雑誌論文 (2件) (うち国際共著 2件、 査読あり 2件、 オープンアクセス 2件) 学会発表 (2件) (うち国際学会 2件、 招待講演 2件)

  • [雑誌論文] Neural Architecture Search With Progressive Evaluation and Sub-Population Preservation2024

    • 著者名/発表者名
      Xue Yu、Zha Jiajie、Pelusi Danilo、Chen Peng、Luo Tao、Zhen Liangli、Wang Yan、Wahib Mohamed
    • 雑誌名

      IEEE Transactions on Evolutionary Computation

      巻: 1 ページ: 1~7

    • DOI

      10.1109/TEVC.2024.3393304

    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Myths and legends in high-performance computing2023

    • 著者名/発表者名
      Matsuoka Satoshi、Domke Jens、Wahib Mohamed、Drozd Aleksandr、Hoefler Torsten
    • 雑誌名

      The International Journal of High Performance Computing Applications

      巻: 37 ページ: 245~259

    • DOI

      10.1177/10943420231166608

    • 査読あり / オープンアクセス / 国際共著
  • [学会発表] Scaling Large Scale ML Workloads2024

    • 著者名/発表者名
      Mohamed Wahib
    • 学会等名
      SOS-26
    • 国際学会 / 招待講演
  • [学会発表] AI for Science: An Update on Research Activities from RIKEN- CCS2024

    • 著者名/発表者名
      Mohamed Wahib
    • 学会等名
      ADAC'24 Workshop
    • 国際学会 / 招待講演

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi