研究課題/領域番号 |
23H01461
|
配分区分 | 補助金 |
研究機関 | 国立研究開発法人物質・材料研究機構 |
研究代表者 |
何 亜倫 国立研究開発法人物質・材料研究機構, 電子・光機能材料研究センター, 主任研究員 (20815386)
|
研究分担者 |
山原 弘靖 東京大学, 大学院工学系研究科(工学部), 特任准教授 (30725271)
トン ヴィンセント 東京大学, 大学院工学系研究科(工学部), 教授 (50971628)
|
研究期間 (年度) |
2023-04-01 – 2026-03-31
|
キーワード | BIC / Perovskites / Colloidal quantum dots / Nanolasers / 連続スペクトル中の束縛状態 / ペロブスカイト / コロイド量子ドット / ナノレーザー |
研究実績の概要 |
Solution-processed laser devices, employing mediums like perovskite colloidal quantum dots (QDs), offer cost-effective options for various applications. CsPbX3 QDs, known for their high photoluminescence quantum yield and tunable emissions, hold promise for nanolasers. In FY2023, an isolated CsPbBr3 QD cavity atop the TiO2 nanocylinder array has been investigated, enabling a QD cavity-supported laser via bound states in the continuum (BIC) providing strong light confinement. Unlike miniaturized BIC lasers using surrounded boundary photonic crystals, direct fabrication of well-defined QD patterns reduces losses without complex photonic crystal designs.
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
In FY2023, a single-mode BIC laser utilizing CsPbBr3 QDs has been presented, boasting a narrow linewidth of approximately 0.1 nm. Contrasting with conventional QD slab-based BIC lasers, this proposed QD waveguide-BIC laser, supported by CsPbBr3 QD cavity, maintains a low lasing threshold even at small cavity sizes. Crucially, our design enables a miniaturized BIC laser with a device size as small as 10 × 10 um, the smallest among existing solution-processed QD BIC lasers. This study offers a pathway for developing ultra-compact BIC lasers using solution-processed QD gain media.
|
今後の研究の推進方策 |
In FY 2024, we will demonstrate enhanced light-matter coupling by integrating low-dimensional materials with a membrane metasurface, leading to amplified and concentrated spontaneous emission from quasi-BIC-coupled low-dimensional gain materials. Notably, the membrane metasurface, suspended in air rather than positioned atop a substrate, will minimize radiation loss while enhancing light-matter interaction in the gain materials. This research introduces a nanophotonic platform for robust coupling of membrane metasurfaces with low-dimensional materials, offering new possibilities for developing low-dimensional material-based nanophotonic and quantum devices.
|