• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実施状況報告書

リチウムイオン電池の広域温度動作に向けた電解液設計

研究課題

研究課題/領域番号 23KF0021
研究機関東京大学

研究代表者

山田 淳夫  東京大学, 大学院工学系研究科(工学部), 教授 (30359690)

研究分担者 ZHANG QIU  東京大学, 大学院工学系研究科(工学部), 外国人特別研究員
研究期間 (年度) 2023-04-25 – 2025-03-31
キーワードZinc batteries / potential shift / Madelung potential / solvation structure
研究実績の概要

Metal plating has drawn lots of attention owing to their high theoretical capacity and low potential for battery applications. In any electrochemical system, the electrochemical potential is the most important part that drives the redox reactions. The potential shift in lithium system was demonstrated by our group with different salt concentrations and solvent species.
In my research, the concept of potential shift was extended to aqueous zinc system. The potential shift of zinc metal can be regulated by different kinds of cations and anions. The huge potential gap of ~0.7 V can be achieved. Most importantly, the relationship among ion species, solvation structure, potential shift was constructed by multi-perspective experiments and theoretical calculations.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

The potential shift of zinc metal caused by different salts, composed of different cations and anions, was fully revealed by experiment. There is a clear relationship between the ion species and the potential shift. Furthermore, we tried to understand the science behind the phenomena. By using DFT calculations and molecular dynamics simulations, the micro local structure of zinc cation in the different electrolyte was unveiled. The solvation structure of zinc cation can be affected and involved with different ions. The stability of the structure of zinc cation finally decides the potential shift of zinc metal.

今後の研究の推進方策

Although lots of experiments and calculations have been conducted on revealing the underlying science of potential shift of zinc metal in different electrolytes, the state-of-art explanation is not clear enough. The perspective on solvation structure is limited, rather than providing a comprehensive understanding of the electrolyte structure.
So, the next step is to strive for a comprehensive understanding of the potential shift of zinc metal. Madelung potential calculation is demonstrated in the lithium system. We will work on applying this calculation on zinc system.

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi