• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実施状況報告書

神経ネットワーク顕微鏡画像の生成と分析のための深層学習手法の開発

研究課題

研究課題/領域番号 23KF0296
研究機関国立研究開発法人理化学研究所

研究代表者

Skibbe Henrik  国立研究開発法人理化学研究所, 脳神経科学研究センター, ユニットリーダー (00735764)

研究分担者 DECROOCQ MEGHANE  国立研究開発法人理化学研究所, 脳神経科学研究センター, 外国人特別研究員
研究期間 (年度) 2023-11-15 – 2026-03-31
キーワードmulti-scale cGAN / microscopy imaging / neuron tracing / generative AI
研究実績の概要

We developed a new method leveraging conditional generative adversarial networks (cGANs) to generate diverse, high-resolution microscopy images for neuron tracing model training. The goal is to circumvent the limitations associated with the scarcity of annotated data for training machine learning models. The results were submitted as a full paper to the MIDL (Medical Imaging with Deep Learning) conference, where it has been accepted for presentation. The title of the paper is : "Multi-scale Stochastic Generation of Labelled Microscopy Images for Neuron Segmentation".

現在までの達成度 (区分)
現在までの達成度 (区分)

1: 当初の計画以上に進展している

理由

After only a few months into the project, we have already achieved a significant milestone with a paper accepted at a competitive, international conference. This early success demonstrates the effectiveness of our approach.

今後の研究の推進方策

We plan to advance our research by developing new tracing methods based on graph neural networks, which will incorporate global neuron topology into the learning process. Our goal is to seamlessly integrate these methods with our generative image synthesis algorithm, thereby creating a comprehensive pipeline for the automated analysis of neuron microscopy images. This integration is expected to significantly enhance the accuracy and efficiency of neuronal morphology analysis.

次年度使用額が生じた理由

As part of this research project, we have a paper accepted for presentation at the MIDL conference in Paris, scheduled for 3-5 July 2024. The allocated funds will be used to cover travel expenses and conference fees. Additionally, we plan to utilize the remaining budget to cover the publication fee for a paper that we aim to publish in an international journal.

  • 研究成果

    (1件)

すべて 2023

すべて 学会発表 (1件)

  • [学会発表] Synthetic microscopy image generation for deep learning-based automatic tracing of Drosophila neurons2023

    • 著者名/発表者名
      Meghane Decroocq, Adrian Moore, Binbin Xu, Charissa Poon, Henrik Skibbe
    • 学会等名
      The Asia Pacific Drosophila Neurobiology Conference (APDNC3)

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi