研究課題
説明的AIへの応用が期待される有限オートマトン、文脈自由文法、およびそれらの重み付き拡張モデルについて、表現能力や周期性、代数的性質の調査を行った。今年度前半には、主にParikhの定理の拡張可能性についての研究を行った。Parikhの定理は文脈自由言語の線形的な周期性を保証する定理であり、文脈自由文法の解析を単純化するという応用を持つ。通常、Parikhの定理はParikh同値関係と呼ばれる語上の同値関係を用いて説明されるが、その同値関係を一般化することで、Parikhの定理をより汎用性の高い主張に拡張した。この成果について、オートマトン理論の国際会議であるCIAA(International Conference on Implementation and Application of Automata)にて発表を行った。今年度後半には、Parikhの定理で述べられるような言語の周期性が、どのように代数的構造として表現されるのかを明らかにした。具体的には、特定の周期を持つ正則言語の構文モノイドが、その周期を直接的に表現するような巡回群によって半直積の形に分解されることを示した。さらに、機械学習と深く関係するマルコフ連鎖の理論への応用や、半群論における古典的な結果であるKrohn-Rhodes分解定理との関係性についても調査した。この成果については、現在オートマトン理論の国際会議に論文を投稿中である。
2: おおむね順調に進展している
本年度の研究の主な目的は、説明的AIヘの応用が見込まれる種々の計算モデルについて、その周期性や表現能力を明らかにすることであった。本年度の研究では、有限オートマトンや文脈自由文法などの形式言語理論における基本的な計算モデルについて、それらの周期性や表現能力を、代数的アプローチを中心に様々な視点から解明できた。
引き続き、正則言語や文脈自由言語の周期性や代数的性質の解明に取り組むほか、これまで得られた知見を隠れマルコフモデル等の機械学習モデルに適用することで、説明的AIへの応用方法について検討を行う。
発表を予定していた国際会議を、2024年度開催のものに変更したため。その会議の参加費用に用いる。
すべて 2024 2023
すべて 雑誌論文 (2件) (うち査読あり 2件、 オープンアクセス 1件) 学会発表 (3件) (うち国際学会 1件)
Theoretical Computer Science
巻: 974 ページ: 114112~114112
10.1016/j.tcs.2023.114112
IEICE Transactions on Information and Systems
巻: E106.D ページ: 309~318
10.1587/transinf.2022FCP0006