• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2013 年度 実施状況報告書

混合モティーフ層と混合Tateモティーフの理論

研究課題

研究課題/領域番号 24540033
研究機関東北大学

研究代表者

花村 昌樹  東北大学, 理学(系)研究科(研究院), 教授 (60189587)

キーワード混合モティーフ / Hodge structure / semi-algebraic set
研究概要

(Logarithmic integrals associated to mixed Tate motives) We studied integrals which appear as periods of mixed Tate motives.
(1) For a semi-algebraic set S in complex n-dimensional space and a differential form having poles along co -ordinate hyperplanes, assuming a certain condition on the dimension of the intersection of S and the pole divisor, we showed that the integral of the form on S absolutely converges. (2) We showed the Cauchy formula for semi-algebraic sets in complex n-space with respect to its intersection with coordinate hyper -planes. (3) We defined a complex of semi-algebraic chains of complex n-space, and showed that it calculates the homology of the n-space.
(Relative algebraic correspondences and quasi DG categories)
(1) Fix an algebraic variety S as a base. We defined the complex of algebraic correspondences between varieties over S; we showed that the class of varieties over S, together with the complex of algebraic correspondences constitutes a quasi DG category (a generalization of a DG category). (2) Given a quasi DG category C, we gave the construction of another quasi DG category C', whose associated homotopy category has a natural structure of a triangulated category.

現在までの達成度 (区分)
現在までの達成度 (区分)

1: 当初の計画以上に進展している

理由

(Log integrals appearing in the theory of mixed motives.)The result that the convergence of a log integral follows from a certain condition on the dimension of intersection of the semi-algebraic set with the pole divisor is noteworthy.
The proof turned out to be highly non-trivial, relying on the Hironaka-Spivakovsky method of resolution as well as results on semi-algebraic sets such as Lojasiewicz inequality.
(Relative algebraic correspondences and quasi DG categories) The notion of quasi DG category is noteworthy and will turn out to be useful in various contexts. We have documented the theory of producing a triangulated quasi DG category out of a quasi DG category.

今後の研究の推進方策

(Theory of Hodge realization of mixed Tate motives. )
We intend to achieve:
(1) Construction of the mixed Hodge structure associated to a mixed Tate motive. We will do this via Deligne cohomology. (2) Another construction of the mixed Hodge structure associated to a mixed tate motive, using the log integral method we have established (the theory of integration over semi-algebraic sets mentioned in the summary of achievements). (3) Proof that the two methods give the same structure.

次年度の研究費の使用計画

研究集会を2回行う計画であったが,主要な参加者の複数が国内に不在の時期にあたり,それが遂行できなくなった.
研究集会を今年度,2回程度,またワークショップを今年度に数回おこなう.

  • 研究成果

    (2件)

すべて 2013 その他

すべて 雑誌論文 (1件) (うち査読あり 1件) 学会発表 (1件) (うち招待講演 1件)

  • [雑誌論文] 相対的な代数的対応と混合モティーフ層2013

    • 著者名/発表者名
      Masaki Hanamura
    • 雑誌名

      数理研講究録別冊

      巻: B44 ページ: 85-98

    • 査読あり
  • [学会発表] Chow cohomology groups of singular algebraic surfaces

    • 著者名/発表者名
      Masaki Hanamura
    • 学会等名
      特殊多様体研究集会
    • 発表場所
      玉原セミナーハウス
    • 招待講演

URL: 

公開日: 2015-05-28  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi