研究課題/領域番号 |
24560089
|
研究機関 | 電気通信大学 |
研究代表者 |
新谷 一人 電気通信大学, 情報理工学(系)研究科, 教授 (00162793)
|
キーワード | グラフェン / ナノ材料 / カーボンナノチューブ / グラフェンナノリボン / 空孔欠陥 / 粒界 / 面外変形 / グラフェイン |
研究概要 |
●ピラードグラフェン(PG)の変形特性:本年度はねじり変形を主に取り上げた。2枚の円形グラフェンと1~7本のカーボンナノチューブ(CNT)から成る7種類のモデルを作成した。各モデルに対してねじりシミュレーションを行った。その結果、CNTが1本のモデルのねじり剛性は、近似的に求めた断面二次極モーメントとグラフェンのせん断弾性係数の積にほぼ一致すること、また、PGのねじり剛性はCNTの本数に比例して増加することがわかった。 ●集中荷重下の両端固定グラフェンナノリボン(GNR)の変形特性: 当初、交差GNRのインデンテーションシミュレーションを行う予定であったが、交差GNRでは上下GNR交差部のエッジ原子間相互作用の影響が大きく、定量的データ取得が困難であることが判明した。そのため、対象を集中荷重下にある両端固定GNRに代えてシミュレーションを行い、荷重-たわみの関係を求めた。GNRの層数として1、3、 5、7を採用し、単層GNRに対しては薄膜であると仮定、多層に対してははりであると仮定して、ヤング率を求めた。その結果、層数の増加に伴いヤング率は減少する傾向があることがわかった。 ●空孔欠陥を有するグラフェンの安定構造とバンド構造:第一原理計算にはVASPコードを使用した。スーパーセルは7×7サイズのグラフェンとして、この中心部分に1~6個の空孔からなる欠陥V1~V6を配した。V1~V6に対してそれぞれ2、2、1、3、5、13とおりの初期構造から出発して構造緩和計算を行い、その安定構造と欠陥形成エネルギーを計算した。その結果、V1~V6の安定構造のうち、Kotakoski et al. (2011) によって発見された555-777構造のV2(双空孔)の形成エネルギー(6.485eV)が最小であることがわかった。また、各安定構造に対するバンド構造を計算した結果、非対称V1(単空孔)、585構造V2(双空孔)、V4の安定構造の1つにバンドギャップが存在する可能性があることがわかった。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
4: 遅れている
理由
平成24年度の研究実施状況報告書の今後の推進方策に記載した平成25年度の研究実施計画のうち、第二の項目である交差GNRのインデンテーションシミュレーションについては、集中荷重下の両端固定GNRに対するシミュレーションで代替した。第三の項目である空孔欠陥を有するグラフェンの安定構造とバンド構造については予定どおりシミュレーションを行ったが、精度検証と追加計算が必要である。第一の項目であるSi基板上グラフェンの構造に関しては、SiC基板上グラフェンの場合と同じく、van der Waals相互作用を考慮した適当なポテンシャル関数を用意することができず、断念せざるを得ないことがわかった。
|
今後の研究の推進方策 |
平成24、25年度の研究実施状況と予定していた計算が実施困難であることを考慮して、交付申請書に記載した平成26年度の研究実施計画を変更し、下記の項目について研究を進める予定である。 ●多結晶グラフェンの力学的特性:大面積グラフェンは単結晶でありえず、結晶粒界を伴う多結晶として存在する。結晶粒界を傾角に見合うStone-Wales欠陥列としてモデルを作成し、引張シミュレーションによってヤング率と引張強度を求める。 ●空孔欠陥を有するグラフェンの安定構造とバンド構造:精度検証のためにスーパーセルの大きさを変えて第一原理計算を行う。平成25年度と同じく、計算にはVASPを使用し、空孔欠陥の大きさを変えたモデルを複数作成して空孔欠陥の形成エネルギーとバンド構造を計算する。平成25年度に計算した欠陥構造に加えて未試行の欠陥構造に対しても計算を行い、非ゼロのバンドギャップを持つ欠陥構造を探る。 ●引張変形下のグラフェインの電子的特性:グラフェンの両面に水素が付加されたグラフェインは、非ゼロのバンドギャップを有することが知られている。このバンドギャップが引張変形下においてどのように変化するかVASPを用いた第一原理計算によって調べる。
|
次年度の研究費の使用計画 |
旅費の見積額と支払額の間で110円の差が生じたため。 次年度使用額が生じているがその額は110円と小額である。平成26年度に使用予定の直接経費と合わせて使用する。
|