研究課題/領域番号 |
24654120
|
研究種目 |
挑戦的萌芽研究
|
研究機関 | お茶の水女子大学 |
研究代表者 |
田代 徹 お茶の水女子大学, 理学部, 学部教育研究協力員 (80436724)
|
研究期間 (年度) |
2012-04-01 – 2015-03-31
|
キーワード | 自己重力系 / 準平衡状態 / 力学平衡 / 球状星団 / 銀河 / ブラックホール |
研究概要 |
今年度の研究は当初の「研究実施計画」通り,自己重力多体系の数値計算を中心に行った.具体的には,多体系の中心に質量の異なる粒子を配置し,その質量の変化や初期ビリアル比の変化が場の構造にどのような影響を与えるかを調べた.これは実在の系ではブラックホールを含んだ球状星団や銀河に相当する.質量の異なる粒子の配置は当初の計画にはなかったが,平成26年度に予定している球状星団や銀河の生成シナリオを構築する上で,重い粒子を含む自己重力系の数値計算は欠かすことのできないと考え,研究計画に新たに盛り込んだ.というのも昨今,ブラックホールの質量(M)と球状星団や銀河の星たちの速度ゆらぎ(σ)との間にベキ的な関係(M-σ関係)があることが明らかになっており,この関係が球状星団や銀河の構造進化を解明する鍵として期待されているからである. 数値計算の結果で特筆すべきものは以下の2つが挙げられる. 先ず,全エネルギーを増加させると,定常状態における1粒子あたりの運動エネルギー(これを”温度”と定義した)が減少することがわかった.これは比熱が負であることを意味している.従来負の比熱は,1次元重力リングモデルやHMFモデルなど低次元長距離系で確認されていたが,3次元自己重力系で負の比熱が確認されたのは,我々の知る限り,他に例を見ない. 次にσのM依存性に関して,力学平衡にある系と部分的に2体緩和に達している(すなわち準平衡状態にある)系との間に,共通する特徴が確認できた.これは自己重力系に存在する,2つの定常状態,力学平衡と準平衡状態,との間に普遍的な性質が見つかったことになる.さらにこの事実は「研究の目的」に掲げた,異なる時間ステージ,定常状態にわたる普遍的な現象論的記述に向けて,拠り所となる数値計算上の事実が得られたことを意味し,大変意義深い.
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
2次元自己重力系以外の,1次元自己重力リングモデルや3次元の自己重力系の数値計算の結果は得られている.さらには3次元自己重力系において,本研究の目標としている,自己重力系に存在する異なる時間ステージ,定常状態にわたる普遍的な現象論的記述をする上で,拠り所とすべきと数値計算の結果が得られている.更に,本研究で解明を目指している,自己重力系における負の比熱が初めて3次元で発見された.以上を考慮すれば,「研究の目的」に掲げた初年度の達成度は順調に進展していると判断して良いであろう.
|
今後の研究の推進方策 |
先ず,2次元自己重力系の数値計算結果が不十分であるので,その補充を行う.それと同時進行で,平成24年度中に得られた興味深い数値計算の結果を,研究代表者が考案した重力版Langevin方程式を使って説明する.重力版Langevin方程式とは,通常のLangevin方程式を拡張し,自己重力系の1つの構成要素とそれ以外との相互作用のやり取りを,重力の長距離伝播性をあらわに取り入れたノイズで表現したものである.具体的には,ノイズは加法的ノイズと乗法的ノイズの2種類からなる.自己重力系の中心近傍では,乗法的ノイズの強度は,平均場からの力のゆらぎを表す.このモデルを使って,異なる時間ステージ,定常状態にわたる普遍的な現象論的記述を目指す. 更に,拡張した静水圧平衡を用いた流体的描像で,自己重力系の構造進化を追うことも,新たに研究計画に盛り込むつもりである.従来の静水圧平衡とは,運動エネルギーから生まれる局所圧力と平均場からの力がつり合うことである.これはつまり,自己重力系中の粒子が相互作用を感じずに自由に運動している,つまり系が力学平衡にあることを意味していると言って良い.ここでの拡張とは,局所圧力に重力による相互作用効果を盛り込むことで,力学平衡から更に時間発展して,準平衡状態にある系の記述を目指すものである.すなわち,局所圧力を「運動項」だけでなく「ポテンシャル項」まで考慮することで,力学平衡から準平衡状態までを記述しようとする戦略である. 以上2つのモデルの関係を吟味し,また相補的に用いて,数値計算結果の説明を行う.
|
次年度の研究費の使用計画 |
先ず平成25年7月に,平成24年度に得られた興味深い数値計算の結果を,統計物理学における最大の国際会議であるstatphys25(@ソウル・韓国)に参加,発表し,様々な国の研究者と議論する予定である.更に平成25年9月と平成26年3月に日本物理学会に参加し,研究の成果を発表する予定である.また必要であれば,専門書等の購入も行う予定である.
|