• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2012 年度 実施状況報告書

複素鏡映群に付随するヘッケ代数とその準遺伝被覆のモジュラー表現論

研究課題

研究課題/領域番号 24740007
研究種目

若手研究(B)

研究機関信州大学

研究代表者

和田 堅太郎  信州大学, 理学部, 助教 (60583862)

研究期間 (年度) 2012-04-01 – 2016-03-31
キーワード表現論 / 組合せ論 / Hecke 環 / 量子群 / 複素鏡映群 / 圏化 / Fock空間
研究概要

G(r,1,n) 型の複素鏡映群に付随する cyclotomic Hecke 代数の準遺伝被覆である cyclotomic q-Schur 代数のモジュラー表現論について研究した。
r=1 のときの cyclotomic q-Schur 代数は,古典的な q-Schur 代数であり,それは一般線型リー代数に対応する量子群の商代数であることが知られている。よって,q-Schur 代数の表現を量子群の表現とみなすことによって,より多くの操作を施し,その性質を調べることができる。一般の cyclotomic q-Schur 代数に対してもそのような操作を行いたい。そこで,cyclotomic q-Schur 代数に対し(可算無限個の)生成元を定義し,その間の関係式を調べることによって,新たな代数を定義しその商代数として cyclotomic q-Schur 代数を実現した。ここで定義された代数の生成元と基本関係式はは,ヤンギアン(あるいはアファイン量子群) の Drinfeld による表示によく似ており(それらとの関係はまだよく分かってないが),そこでの表現論と同様な議論が行える。ただし,ヤンギアンや量子群はホップ代数の構造を持っており,そのことによって多くの操作を行うことが出来る。新たに今回定義した代数もホップ代数の構造を持っていることを期待しているが,まだ分かっていない。今年度はとりあえず,(少なくとも) cyclotomic q-Schur 代数の加群のなす圏がそのような構造(つまり,テンソル圏としての構造) を持つ可能性について,表現論の立場からいろいろ調べた。予想以上に関係式を求めるのに時間がかかっているため(まだ完全に分かったとは言えない),まとまった結果を得るには至っていないが,新たな視点を得ることができたので,今後,多くの応用が得られると確信している。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

研究計画において,cyclotomic q-Schur 代数のモジュラー表現論が基本にあり,特に,cyclotomic q-Schur 代数の可算無限個の生成元を用いた, Drinfeld 型の表示がその要を担っていると考えている。
よって,そのような表示が得られ,それを用いた cyclotomic q-Schur 代数の表現の特徴付けがある程度得られていること,また,次年度以降の計画を遂行するために必要な情報がある程度得られてきていることから,研究が順調に進展していると判断できる。

今後の研究の推進方策

とりあえず,順調に進んでいるので,現在課題となっていることを継続して行い,来年度中にはまとめたい。
また,新たな視点の発見により,当初の計画時には考えていなかった方法が有効であるように思われるので,その可能性について整理したい。ただし,これは当初の計画を大きく変更するものではなく,むしろ計画を達成するために必要なことである。
また,関連する研究が目まぐるしく進行しているので,関係研究者と連絡を取り合い,本研究の位置付け,拡がりについても情報収集,発信をしていく。

次年度の研究費の使用計画

当初,予定していた海外出張が都合によりキャンセルとなったため,次年度に繰り越す研究費が生じた。それほど大きな額ではないので,次年度以降の海外出張,または関係研究者の招聘のための費用に充てる予定。

  • 研究成果

    (2件)

すべて 2012 その他

すべて 雑誌論文 (1件) (うち査読あり 1件) 学会発表 (1件)

  • [雑誌論文] On Weyl modules of cyclotomic q-Schur algebras2012

    • 著者名/発表者名
      Kentaro Wada
    • 雑誌名

      Contemporary Mathematics

      巻: 565 ページ: 261-286

    • DOI

      10.1090/conm/565

    • 査読あり
  • [学会発表] cyclotomic q-Schur 代数の Drinfeld 型の表示について

    • 著者名/発表者名
      和田 堅太郎
    • 学会等名
      組合せ論的表現論とその周辺
    • 発表場所
      京都大学数理解析研究所

URL: 

公開日: 2014-07-24  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi