• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2014 年度 実施状況報告書

アーベル多様体のモジュライ空間に入る階層構造と葉層構造の研究

研究課題

研究課題/領域番号 25800008
研究機関横浜国立大学

研究代表者

原下 秀士  横浜国立大学, 環境情報研究科(研究院), 准教授 (70396852)

研究期間 (年度) 2013-04-01 – 2017-03-31
キーワード代数幾何学 / アーベル多様体 / モジュライ空間 / p-可除群 / Deligne-Lusztig多様体
研究実績の概要

飽和 Newton polygons を持つ p-可除群の同種類の分類に関する美しい定理を証明できた。結果の詳細は、非常に弱い仮定の下、飽和 Newton polygons を持つ p-可除群は、幾何的ファイバーが全て極小(minimal)であるp-可除群と同種であるというものである。この結果は、本年度論文を執筆し、すでに投稿を行った。本研究テーマは主偏極アーベル多様体のモジュライ空間に入る葉層の境界の決定であるが、上記定理は、偏極が無い変種に対する飽和 Newton polygons を持つ場合の葉層の境界の決定に関し、重要な役割を果たすと期待している。ある意味特殊な場合であるが、最も典型的な場合であり、適切な問題設定だと考えている。偏極付きの場合と偏極無しの場合は共に興味深い研究対象であり、本研究課題については偏極無しの場合の方がやや易しい問題と考えているため、先ず偏極無しの場合に取り掛かっている。近いうちに偏極無しかつ飽和 Newton polygons を持つ場合の葉層の境界の決定に決着がつけれられるのではないかと考えている。
関連研究として、BT_1 の新しい分類法についても結果を得ていたが、今年度ある種の一般化も得ることができたので、現在論文の構成について検討している。また、代数群の有限環値点として得られる有限群の表現論も引き続き取り組み、ある場合の結果の論文を執筆中である。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

飽和 Newton polygons を持つ p-可除群の同種類の分類に関する美しい定理を証明できた。これは葉層の境界の決定という本研究テーマの達成の最初のステップとなると期待している。その他、関連研究にも進展があった。

今後の研究の推進方策

基本的には、多くのアイデアを試し、地道に計算を積み重ね、課題を解決したり、面白い現象をみつけたりするより他ない。国内外の研究者との意見交換は、新しいアイデアを得るもっともよい方法だと思っている。特に、主偏極アーベル多様体のモジュライ空間に入る葉層構造の研究については、研究当初から共同研究しているFrans Oort教授と連絡を取り合い、研究を進めて行きたい。

次年度使用額が生じた理由

適切な研究費の使用の結果、2045円の残額が生じた。少額であるため、次年度以降の使用が適切と考えた。

次年度使用額の使用計画

書籍購入等適切に使用する。

  • 研究成果

    (2件)

すべて 2014

すべて 学会発表 (2件) (うち招待講演 2件)

  • [学会発表] アーベル多様体のモジュライ空間に入る階層構造2014

    • 著者名/発表者名
      原下秀士
    • 学会等名
      Arithmetic Geometry Seminar
    • 発表場所
      北海道大学理学部
    • 年月日
      2014-09-17 – 2014-09-19
    • 招待講演
  • [学会発表] A new parametrization of BT_1's2014

    • 著者名/発表者名
      原下秀士
    • 学会等名
      愛媛整数論ミニ研究集会
    • 発表場所
      愛媛大学大学院理工学研究科
    • 年月日
      2014-08-09
    • 招待講演

URL: 

公開日: 2016-06-01  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi