エントロピー生成の時間発展の性質を調べた。特に大偏差性の調べた。通常、エントロピー生成に関する分布と大偏差的性質は、測定時間幅を固定しその時間内でのエントロピー分布を考える。当研究では、逆に考えた。つまり、ターゲットとなるエントロピーを設定し、そのエントロピーが出現する時間分布を探るのである。これは、ランダムウォークなどでよく行われるFirst passage time distribution をエントロピーに対して行うことに相当する。大偏差性を考慮すると、時間分布の漸近挙動は普遍的になることが示された。 また、熱が仕事に変換される熱機関に関する基礎的な研究も行った。カルノーサイクルに見るように、熱効率が最大、つまりカルノー効率に達成すると仕事率は消失すると考えられる。この性質は普遍的であると思われているが、その背後にある本質が何なのかは分かっていなかった。熱力学第二法則はこの性質を導出しないことも、これまでの我々の研究で分かっていた。そこで、今回、マルコフな時間発展に限定した時、厳密に熱効率と仕事率に関するトレードオフ関係式が導出できること示すことに成功した。この関係式から、カルノー効率が仕事率消失を意味するを厳密に示すたことになる。
|