高機能ロバスト非線形制御系の設計法の構築に関して以下の研究を行った。 [1] ロバスト最適化問題有限次元緩和による計算法と厳密性検証の方法として、フルブロック型の不確かさに対する二乗和を用いた緩和法を提案した。数値実験により、これが従来のS-procedureの緩和法を改善するものであることが示された。また、歪対称行列上の探索によりその厳密性を検証する方法を示した。 [2] 保守性の少ない離散時間ゲインスケジュールド(GS)制御法を提案した。GS補償器がスケジューリングパラメータの一時刻前の値に依存することを許し、また拡大型線形行列不等式による設計条件の導出において従来見過ごされていた自由度を活用することにより、閉ループ系のl2ゲインの上界を従来研究に比べ大きく減少させることができた。 [3] 切替システムに関する理論として、二重積分器のダイナミクスを持つマルチエージェントシ系の離散値出力のみを用いた合意制御法を提案した。フィリポフ解の枠組みにおけるマルチエージェント系の安定性条件を求めた。本年度、この結果が国際誌に採択された。 [4] リアプノフ密度による非線形システムの安定性解析法を以下の二つの方向で発展させた。(1) 時変非線形システムの解軌道の収束性条件を提案した。従来研究では平衡点の局所的な安定性が必要であったのに対し、それが必要ない条件を示した。(2) 時不変非線形システムの解軌道の指数収束性条件を提案した。従来研究では収束の速さに関する結果はなく、リアプノフ密度を用いて非線形システムの制御性能を保証する初めての結果を得た。また、非線形状態フィードバック則の設計を二乗和計画に帰着する一方法を求め、指数収束性を持つ非線形制御系の設計の数値例により提案法の有効性を示した。これら(1)(2)の結果を国際・国内会議にて発表した。
|