• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2015 年度 実績報告書

Large-Scale Location Mining for Multi-dimensional Risk Factors Discovery: A study for Road Accident Prevention

研究課題

研究課題/領域番号 26540166
研究機関東京大学

研究代表者

ホラノン ティーラユット  東京大学, 空間情報科学研究センター, 客員研究員 (00598287)

研究分担者 関本 義秀  東京大学, 生産技術研究所, 准教授 (60356087)
研究期間 (年度) 2014-04-01 – 2016-03-31
キーワードInterpolation / Risk factors / Road traffic acciden / Data Mining / Spatial correlation
研究実績の概要

The main finding of this study is the influential factors in traffic accidents. Those independent variables are found to be influential; that is, number of shops, number of elementary schools, number of sport facilities, number of intersections, number of people commuting to work by train, automobile, bicycle, and on foot, number of rainy days, number of snowy days, urban area, and total length of roads are statistically significant in the traffic accidents models on workday; and number of shops, number of department stores, number of intersections, number of residents, number of rainy days, number of snowy days, urban area, and total length of roads are significant in the traffic accidents models on weekend and holiday.After the identifying factors among land use, climate, road and demographic variables, it is necessary to develop models that consider temporalchanges. Land use factors, which rarely change in short period of time, and demographic factors, which change also in a longer time period should be considered. In addition, it is necessary to include factors which change daily or in a shorter time period using real time climate data and road related data such as traffic volume and speed to alert users when they enter high risk zones. By developing this approach, it could improve the road safety and reduce traffic accidents; it is anticipated that heavy or fatal accidents will decrease and that awareness of road users will be raised at all time and all places.

  • 研究成果

    (3件)

すべて 2015 その他

すべて 学会発表 (2件) (うち国際学会 2件) 備考 (1件)

  • [学会発表] Modeling traffic accidents occurrences based on land use and road factors using geographically weighted regression models2015

    • 著者名/発表者名
      Paweenuch Songpatanasilp
    • 学会等名
      10th International Conference on Knowledge Information and Creativity Support Systems
    • 発表場所
      Phuket(Tahailand)
    • 年月日
      2015-11-12 – 2015-11-14
    • 国際学会
  • [学会発表] Traffic accidents risk analysis based on road and land use factors using GLMs and zero-inflated models.2015

    • 著者名/発表者名
      Paweenuch Songpatanasilp
    • 学会等名
      14th International Conference on Computers in Urban Planning and Urban Management
    • 発表場所
      Massachusetts(USA)
    • 年月日
      2015-07-07 – 2015-07-10
    • 国際学会
  • [備考] 東京大学 空間情報科学研究センター&生産技術研究所  柴崎・関本研究室

    • URL

      http://shiba.iis.u-tokyo.ac.jp/

URL: 

公開日: 2017-01-06  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi