• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2014 年度 実績報告書

Fast Optimal Transport and Applications to Inference and Simulation in Large Scale Statistical Machine Learning

研究課題

研究課題/領域番号 26700002
研究機関京都大学

研究代表者

CUTURI Marco  京都大学, 情報学研究科, 准教授 (80597344)

研究期間 (年度) 2014-04-01 – 2017-03-31
キーワードoptimal transport / medical imaging / graphics / optimization
研究実績の概要

We have proposed over the past year several important results related to the fast computation of Wasserstein distances and their direct application to statistics, computation, and machine learning.
Our flagship contribution is a paper accepted at ACM SIGGRAPH 2015. ACM SIGGRAPH 2015 is the most competitive venue in the whole field of computer science. In that contribution, we lay out a novel approach to carry out optimal transport on meshes of more than 1 million points. This approach can serve as a blueprint to apply optimal transport in other challenging settings.
Our second important contribution is a publication in the SIAM Journal on Scientific Computing. That publication provides the mathematical tools needed to support our application to graphics in SIGGRAPH, and provides an elegant and surprisingly simple way to compute barycenters in the Wasserstein space.
Our third contribution is an application to medical imaging, which allows for an intelligent averaging of cortical activation maps. We will present these results in the IPMI (Information Processing in Medical Imaging) conference.
Combined, our first year in this project has been extremely productive. We have also organized (one year ahead of the planned schedule) a workshop at the NIPS workshop on optimal transport, which was a success, with more than 60 attendees and prestigious speakers.

現在までの達成度 (区分)
現在までの達成度 (区分)

1: 当初の計画以上に進展している

理由

The excellence of our list of publications this year is the reason we believe we are progressing more smoothly than initially planned. We have 2 journal papers (ACM Transactions in Graphics/Siggraph , SIAM Journal on Scientific Computing) in tops venues, and a conference proceeding in a very competitive medical imaging conference (IPMI). In addition to this we have held a workshop on this topic during the NIPS conference (we were planning to do so much later in the course of this project).

今後の研究の推進方策

Our plans for future work include
- domain dependent approximations, to speed up computations;
- methodological innovation grounded on our increased computational abilities: this will cover as a whole any introduction of the Wasserstein distance in parameter estimation for statistical models and/or dimensionality reduction (Wasserstein PCA, Wasserstein dictionary learning etc...)
- consideration of specific application domains such as natural language processing and computer vision
We are confident that we can add even more value to this project by exploring all these low hanging fruits.

次年度使用額が生じた理由

Our project has just started, and we have initial funds to buy hardware and carry out important travel to write papers with collaborators and give talks at important, specialized venues in both the fields of optimal transport and that of statistics/machine learning.
We need to continue these important collaborations and, to a lesser extent, invest further in hardware to be able to fulfill our goals.

次年度使用額の使用計画

Our plan is to continue our collaborations by working closely with Justin Solomon (Stanford University), Gabriel Peyre (Dauphine University), Jean-David Benamou (INRIA) who are our main collaborators at this time. We have several new ideas in this field and need to concretize them. Our second usage plan will be to help and support my collaborators at Kyoto University, mostly students, so that they can present their work in the most prestigious conference venues.

  • 研究成果

    (8件)

すべて 2015 2014

すべて 雑誌論文 (3件) (うち査読あり 3件、 オープンアクセス 3件、 謝辞記載あり 3件) 学会発表 (4件) (うち招待講演 4件) 産業財産権 (1件)

  • [雑誌論文] Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains2015

    • 著者名/発表者名
      J. Solomon, F. de Goes, G. Peyre, M. Cuturi, A. Butscher, A. Nguyen, T. Du, L. Guibas.
    • 雑誌名

      ACM Transactions on Graphics / SIGGRAPH

      巻: 未定 ページ: 未定

    • 査読あり / オープンアクセス / 謝辞記載あり
  • [雑誌論文] Iterative Bregman Projections for Regularized Transportation Problems2015

    • 著者名/発表者名
      J.D. Benamou, G. Carlier, M. Cuturi, L. Nenna, G. Peyre,
    • 雑誌名

      SIAM Journal on Scientific Computing

      巻: 未定 ページ: 未定

    • 査読あり / オープンアクセス / 謝辞記載あり
  • [雑誌論文] Fast Optimal Transport Averaging of Neuroimaging Data2015

    • 著者名/発表者名
      A. Gramfort, G. Peyre, M. Cuturi
    • 雑誌名

      Springer LNCS, Information Processing in Medical Imaging

      巻: 未定 ページ: 未定

    • 査読あり / オープンアクセス / 謝辞記載あり
  • [学会発表] An overview of Wasserstein barycenter algorithms2015

    • 著者名/発表者名
      M. Cuturi
    • 学会等名
      New Trends in Optimal Transport
    • 発表場所
      Bonn, Germany
    • 年月日
      2015-03-02 – 2015-03-06
    • 招待講演
  • [学会発表] Optimal Transport with Entropy Regularization: Pros and Cons2015

    • 著者名/発表者名
      M. Cuturi
    • 学会等名
      Advances in Numerical Optimal Transportation, Banff
    • 発表場所
      Banff, Canada
    • 年月日
      2015-02-15 – 2015-02-20
    • 招待講演
  • [学会発表] The Wasserstein Barycenter Problem2015

    • 著者名/発表者名
      M. Cuturi
    • 学会等名
      Optimization and Statistical Learning
    • 発表場所
      Les Houches, France
    • 年月日
      2015-01-12 – 2015-02-16
    • 招待講演
  • [学会発表] The Wasserstein Barycenter Problem2014

    • 著者名/発表者名
      M. Cuturi
    • 学会等名
      Foundations of Computational Mathematics (FoCM 2014)
    • 発表場所
      Montevideo, Uruguay
    • 年月日
      2014-12-18 – 2014-12-20
    • 招待講演
  • [産業財産権] Method to Compute the Barycenter of A Set of Histograms2014

    • 発明者名
      M. Cuturi
    • 権利者名
      M. Cuturi
    • 産業財産権種類
      特許
    • 産業財産権番号
      504132272
    • 出願年月日
      2014-04-16

URL: 

公開日: 2016-06-01  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi