• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2015 年度 実績報告書

Fast Optimal Transport and Applications to Inference and Simulation in Large Scale Statistical Machine Learning

研究課題

研究課題/領域番号 26700002
研究機関京都大学

研究代表者

Cuturi Marco  京都大学, 情報学研究科, 准教授 (80597344)

研究期間 (年度) 2014-04-01 – 2017-03-31
キーワード統計的機械学習 / 最適輸送理論 / 最適化 / グラフィックス
研究実績の概要

The purpose of this research is to explore the novel possibilities that optimal transport theory can provide to statistical modeling, machine learning and other related fields such a graphics and optimization. To do so, the principal investigator of this grand has proposed in 2013 a key result which allows for the resolution of the optimal transport using massively parallel architectures such as GPGPU. This allowed me to propose, within the framework of this project, several ideas in FY2014 which led to notable publications. FY2015 produced even more significant results for our research project. The most noteworthy of these results were the publications of 2 papers in SIAM Journals (SIAM Journal on Scientific Computing, SIAM Journal on Imaging Analysis), coupled with publications in NIPS and SIGGRAPH, arguably the two most visible conferences in computer science.

現在までの達成度 (区分)
現在までの達成度 (区分)

1: 当初の計画以上に進展している

理由

The excellence of the publications we have produced this year clearly demonstrate the importance of our results. We expect several more achievements in coming months, both from machine learning and/or graphics. We are also planning several scientific events later this year and in 2017.

今後の研究の推進方策

We are now consolidating the project, and will therefore aim at producing summaries, reviews, and any other material that might provide additional visibility to our work. Our goal will thus include the publication of a book and the continuation of our publishing strategy, in which we aim for the best possible conferences and venues to give maximal publicity to the topic of modern / numerical optimal transport.

次年度使用額が生じた理由

The program is reaching its final year. We need, more than ever, to connect with other researchers in the world and publicize our findings. Our aim in this final year will be in particular to disseminate these new methods in other fields, such applied/numerical mathematics, statistics and physics.

次年度使用額の使用計画

The biggest source of expense will come from travel. We expect expenses coming from participation to conferences and other forums (workshops, research visits), both for the principal investigator of this project and collaborators (including students). We also expect to keep on spending a small fraction of our budget on hardware (to add to our computational resources) and smaller machines.

  • 研究成果

    (11件)

すべて 2016 2015 その他

すべて 国際共同研究 (2件) 雑誌論文 (4件) (うち国際共著 4件、 査読あり 4件、 オープンアクセス 3件、 謝辞記載あり 4件) 学会発表 (4件) (うち招待講演 4件) 産業財産権 (1件) (うち外国 1件)

  • [国際共同研究] Universite Paris Dauphine/INRIA(France)

    • 国名
      フランス
    • 外国機関名
      Universite Paris Dauphine/INRIA
  • [国際共同研究] Stanford/MIT/Pixar(米国)

    • 国名
      米国
    • 外国機関名
      Stanford/MIT/Pixar
  • [雑誌論文] A Smoothed Dual Approach for Variational Wasserstein Problems2016

    • 著者名/発表者名
      M. Cuturi, G. Peyre
    • 雑誌名

      SIAM Journal in Imaging Sciences

      巻: 9(1) ページ: 320-343

    • DOI

      DOI:10.1137/15M1032600

    • 査読あり / オープンアクセス / 国際共著 / 謝辞記載あり
  • [雑誌論文] Iterative Bregman Projections for Regularized Transportation Problems2015

    • 著者名/発表者名
      Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyre
    • 雑誌名

      SIAM Journal on Scientific Computing

      巻: 37(2) ページ: 1111-1138

    • DOI

      10.1137/141000439

    • 査読あり / 国際共著 / 謝辞記載あり
  • [雑誌論文] Principal Geodesic Analysis for Probability Measures under the Optimal Transport Metric2015

    • 著者名/発表者名
      Vivien Seguy, Marco Cuturi
    • 雑誌名

      Advances in Neural Information Processing Systems 28 (NIPS 2015)

      巻: 1 ページ: 3294-3302

    • 査読あり / オープンアクセス / 国際共著 / 謝辞記載あり
  • [雑誌論文] Convolutional wasserstein distances: efficient optimal transportation on geometric domains2015

    • 著者名/発表者名
      Justin Solomon, Fernando de Goes, Gabriel Peyre, Marco Cuturi, Adrian Butscher, Andy Nguyen, Tao Du, Leonidas Guibas
    • 雑誌名

      ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2015

      巻: 34-4 ページ: paper 66 (8p)

    • DOI

      10.1145/2766963

    • 査読あり / オープンアクセス / 国際共著 / 謝辞記載あり
  • [学会発表] New Approaches to Learn with Probability Measures using Fast Optimal Transport2015

    • 著者名/発表者名
      M. Cuturi
    • 学会等名
      IBIS 2015 Workshop
    • 発表場所
      茨城県つくば市つくば国際会議場
    • 年月日
      2015-11-25
    • 招待講演
  • [学会発表] New Approaches to Learn with Probability Measures using Fast Optimal Transport2015

    • 著者名/発表者名
      M. Cuturi
    • 学会等名
      Workshop on Learning, IMS NUS, Singapore
    • 発表場所
      Institute for Mathematical Sciences, National University of Singapore, Singapore
    • 年月日
      2015-11-18
    • 招待講演
  • [学会発表] New Approaches to Learn with Probability Measures using Fast Optimal Transport2015

    • 著者名/発表者名
      M. Cuturi
    • 学会等名
      Workshop on Optimization in machine learning, vision and image processing
    • 発表場所
      Universite Paul Sabatier, Toulouse, France
    • 年月日
      2015-10-07
    • 招待講演
  • [学会発表] Fast Optimal Transport on GPGPUs2015

    • 著者名/発表者名
      M. Cuturi
    • 学会等名
      GTC Japan 2015 テクニカルセッション
    • 発表場所
      東京都港区 虎ノ門ヒルズフォーラム
    • 年月日
      2015-09-18
    • 招待講演
  • [産業財産権] Method to Compute the Barycenter of a Set of Histograms2015

    • 発明者名
      Marco Cuturi
    • 権利者名
      Marco Cuturi
    • 産業財産権種類
      特許
    • 産業財産権番号
      14/685801
    • 出願年月日
      2015-04-14
    • 外国

URL: 

公開日: 2017-01-06   更新日: 2022-01-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi