• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2018 年度 研究成果報告書

代数幾何学における正標数還元手法の研究

研究課題

  • PDF
研究課題/領域番号 26707002
研究種目

若手研究(A)

配分区分一部基金
研究分野 代数学
研究機関東京大学

研究代表者

權業 善範  東京大学, 大学院数理科学研究科, 准教授 (70634210)

研究期間 (年度) 2014-04-01 – 2019-03-31
キーワードアバンダンス予想 / ファノ型多様体 / 大域的F正則多様体
研究成果の概要

正標数還元手法の研究として、主にファノ型多様体、カラビ・ヤウ型多様体。大域的F正則多様体、および大域的F分裂多様体の研究を行った。前者の二つは極小モデル理論における基本ピースに現れる多様体で、後者の二つは正標数の基礎体上で定義されるフロベニウス写像によって定義される多様体である。この前者と後者は正標数還元により行き来することが予想されている。この研究費での研究期間中の主要な成果はこの予想に関する部分的解決と後者の多様体たちに対する正標数上の極小モデル理論的な観点からの研究である。

自由記述の分野

代数幾何学

研究成果の学術的意義や社会的意義

正標数還元手法は、標数0の代数幾何学において、非常に有効な技術として認識されており、解析的手法とならんで、その手法の応用は非常にインパクトがある。
正標数上の極小モデル理論の研究は標数0上の研究の延長としても非常に重要な研究であり、最近F特異点の研究が正標数上の極小モデル理論の研究に応用されていることから踏まえても、本研究の学術的意味は非常にあったといえる。また正標数上の代数幾何学の社会への応用としては暗号理論をはじめとする様々の分野ですでに確立されているので、本研究はその点における将来的な社会的貢献は十分に可能性がある。

URL: 

公開日: 2020-03-30  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi