研究課題/領域番号 |
63540035
|
研究機関 | 名古屋工業大学 |
研究代表者 |
竹本 史夫 名古屋工業大学, 工学部, 助教授 (50022645)
|
研究分担者 |
林 栄一 名古屋工業大学, 工学部, 教授 (80024173)
加藤 明邦 名古屋工業大学, 工学部, 助教授 (20024226)
山田 浩 名古屋工業大学, 工学部, 教授 (20022551)
|
キーワード | 代数曲面のクラス / 線織面の判定法 / 代数曲面の分類 |
研究概要 |
1.射影空間に埋め込まれた代数多様体が、線織面であるかどうかの判定法として、クラスを用いる方法が考えられる。今年度に行った研究によって、それに関する次の様な定理が得られた。代数曲面Sの次数dとクラスmに関して、mがd+19以下であれば、Sは線織面である。また、m=d+20ならば、Sは線織面または4次元射影空間に埋め込まれたアーベル曲面である。 2.また、リボルニの1985年の論文において存在するかどうか確定されていなかった2種類の代数曲面(論文の2ページ目の分類表における(7)と(9))は存在しないとの証明が得ることが出来た。
|